PREPARATION AND EVALUATION OF Ni/CeO$_2$-SiO$_2$ CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE IN SYNGAS PRODUCTION

SUDARNO

FS 2012 18
PREPARATION AND EVALUATION OF Ni/CeO$_2$-SiO$_2$ CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE IN SYNGAS PRODUCTION

SUDARNO

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
PREPARATION AND EVALUATION OF Ni/CeO$_2$-SiO$_2$ CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE IN SYNGAS PRODUCTION

By

SUDARNO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

February 2012
DEDICATIONS

To my dearest parents, Siti Lastiyah and Achmad Solichin, who always pray and encourage me sincerely.
To my beloved my brothers and family for their doa, understanding, patience and support throughout my study.

Words cannot express alone my gratitude to the people above for their endless and boundless love, and most of all for their ever continuous do’a for my life..

When you have come to a decision, place your trust in God alone. He loves those who place their trust in Him.
If God is there to help you, none will overcome you, and if He forsake you, who will help other than Him?
So only in Allah should the faithful place their trust.

Q.S. Ali Imran 159-160
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PREPARATION AND EVALUATION OF Ni/CeO$_2$-SiO$_2$ CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE IN SYNGAS PRODUCTION

By

SUDARNO

February 2012

Chairman : Professor Taufiq Yap Yun Hin, PhD

Faculty : Science

Dry reforming of methane with carbon dioxide (DRMC) has received great attention, as the process can utilize the two greenhouse gases of CH$_4$-CO$_2$ and produce valuable syngas. The syngas produced from this process has H$_2$/CO = ~1, which is more compatible for various chemical and liquid fuel syntheses. However, carbon formation that leads to the catalyst deactivation is the main obstacle of DRMC process. This study is aimed to develop Ni-based catalysts with high activity, stability and high resistance to the carbon formation. This work studies the effects of different amount of promoter “ceria” loading and different preparation method of supports and catalysts.

In the first study, a series of modified CeO$_2$-SiO$_2$ (CS) supports with different loading of ceria (CeO$_2$) were prepared via deposition precipitation (DP). For comparison, SiO$_2$ and CeO$_2$ were also used as supports. The Ni (5wt.%) catalysts were synthesized using impregnation method. Several characterizations of energy dispersive X-ray fluorescence (EDXRF), N$_2$ adsorption-desorption, X-ray diffraction (XRD), H$_2$ temperature-programmed reduction (H$_2$-TPR), CO$_2$ temperature programmed desorption (CO$_2$-TPD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM) and thermal gravimetric analysis (TGA) were conducted to analyze the physico-chemical properties of the prepared samples as well as to identify the carbon formation of the used catalysts. The results showed that the properties of Ni/xCS catalysts were superior to the Ni/SiO$_2$ and Ni/CeO$_2$ catalysts, in terms of particle sizes, Ni dispersion, reducibility and basicity. The catalytic evaluation of DRMC showed that ceria addition on the Ni-supported catalysts influenced the catalytic performances and hindered the carbon formation significantly. Among these catalysts, Ni/9CS exhibited the best properties with high catalytic performance, high stability and low carbon deposition, thus it was considered as the best catalyst with the optimal amount of ceria. For the second study, four kinds of CeO$_2$-SiO$_2$ (CS) supports have been synthesized via different methods, *i.e.* deposition precipitation (DP), Impregnation (Imp), Sol-gel (SG) and ball milling (BM). Supported Ni (5 wt.%) catalysts were also prepared via impregnation. In addition, two other catalysts, denoted as Ni/CS-DP2 and Ni/CS-D, were prepared by impregnation of CS-DP support and co-impregnation of Ni and Ce on silica with higher temperature of catalyst calcination (700 °C). The characterization results showed that the different method gave significant different physico-chemical properties, catalytic performance and coking resistant. It was found that Ni/CS-DP1 and Ni/CS-DP2 showed the excellent activity and stability, since they have good properties (morphology, reducibility and basicity as well as Ni particle size). The order of catalyst activities is Ni/CS-DP2 > Ni/CS-DP1 > Ni/CS-Imp > Ni/CS-D > Ni/CS-BM and Ni/CS-SG. However, in term of carbon deposition, Ni/CS-DP1 and Ni/CS–DP2 gave higher amount of carbon deposits than those of Ni/CS-Imp, Ni/CS-D and Ni/CS-BM. Whereas, Ni/CS-SG showed the lowest activity with the worst condition of carbon formation due to the bad properties of the catalyst.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENGUJIAN PEMANGKIN Ni/CeO$_2$-SiO$_2$ TERHADAP REFORMASI KERING METANA DAN CARBON DIOXSIDA UNTUK PENGHASILAN SYNGAS

Oleh

SUDARNO

Februari 2012

Chairman : Profesor Taufiq Yap Yun Hin, PhD
Fakulti : Sains

Reformasi kering metana dan karbon dioksida (DRMC) telah mendapat perhatian yang besar, kerana proses ini boleh memanfaatkan kedua-dua gas rumah hijau iaitu CH$_4$ dan CO$_2$ untuk menghasilkan gas berharga iaitu syngas. Syngas yang dihasilkan daripada proses ini mempunyai nisbah H$_2$/CO = ~ 1, yang mana lebih sesuai untuk sintesis pelbagai bahan kimia dan bahan api cecair. Bagaimanapun, pembentukan karbon yang menyebabkan kepada penyahaktifan pemangkin ialah halangan utama proses DRMC. Kajian ini bertujuan untuk membangunkan pemangkin berasaskan nickel (Ni) yang mempunyai aktiviti dan kestabilan yang tinggi serta ketahanan baik terhadap pembentukan karbon. Penyelidikan ini mengkaji kesan daripada penambahana "ceria" dengan jumlah yang berbeza dan mengkaji kesan daripada kaedah penyediaan penyokong dan pemangkin yang berlainan. Dalam kajian yang pertama, satu siri penyokong untuk pemangkin yang telah diubahsuai, CeO$_2$-SiO$_2$ (CS), dengan jumlah muatan ceria (CeO$_2$) berlainan telah disediakan melalui kaedah pemendakan pemendapan (DP). Sebagai perbandingan, SiO$_2$ dan CeO$_2$ juga digunakan sebagai
Pemangkin tersokong Ni (5wt.%) telah disintesis dengan menggunakan kaedah penindihan pada penyokong tersebut. Beberapa analisis iaitu tenaga pancaran sinar-X berpendarfluor (EDXRF), penjerapan-penyahjerapan gas N\textsubscript{2}, pembelauan sinar-X (XRD), reduksi pada suhu terprogram menggunakan aliran H\textsubscript{2} (H\textsubscript{2}-TPR), penyahjerapan CO\textsubscript{2} pada suhu terprogram (CO\textsubscript{2}-TPD), mikroskop imbasan elektron (SEM), mikroskop pemancaran elektron (TEM) dan analisis gravimetrik terma (TGA) telah dijalankan untuk menganalisis sifat fizikal dan kimia sampel serta untuk mengenal pasti pembentukan karbon pada pemangkin yang telah digunakan. Hasil analisis menunjukkan bahawa sifat-sifat pemangkin Ni/xCS dari segi saiz partikel, penyebaran Ni, keupayaan reduksi dan tingkat kebasanya. Hasil uji pemangkinan untuk proses DRMC menunjukkan bahawa penambahan CeO\textsubscript{2} pada pemangkin Ni yang tersokong mempengaruhi aktiviti pemangkin pemangkin tersebut dan menghalang pembentukan karbon dengan ketara. Antara pemangkin yang telah disiapkan, Ni/9CS menunjukkan sifat-sifat terbaik dengan aktiviti dan kestabilan pemangkin pemangkin yang tinggi serta pemendapan karbon yang rendah, oleh sebab itu, ia dianggap sebagai pemangkin terbaik dengan jumlah ceria yang optimum. Bagi kajian kedua, empat jenis penyokong CeO\textsubscript{2}-SiO\textsubscript{2} (CS) telah disintesis dengan menggunakan kaedah yang berbeza, iaitu pemendakan pemendapan (DP), pengisitepuan (Imp), Sol-gel (SG) dan bola pengisaran (BM). Pemangkin Ni (5 wt.%) yang tersokong pada penyokong-penyokong tersebut juga disediakan melalui kaedah penindihan. Sebagai tambahan, dua pemangkin lain yang dilabelkan sebagai Ni/CS-DP2 dan Ni/CS-D, telah disediakan yang juga melalui penindihan pada penyokong CS-DP dan penindihan serentak Ni dan Ce pada SiO\textsubscript{2} tetapi dengan suhu pengkalsinan pemangkin yang lebih tinggi (700 °C). Hasil analisis menunjukkan bahawa kaedah yang berbeza untuk penyediaan sampel telah memberikan perbezaan yang signifikan terhadap sifat
ACKNOWLEDGEMENTS

In the name of Allah, The Most Merciful and The Most compassionate. All praises and thanks to Allah Almighty for His Mercy and Grace. Sholawat and greetings to the Prophet, Muhammad S.A.W. With the blessings and Allah’s guidance, I have completed my research study and preparation of this Master thesis.

First and foremost, I wish to express my deep gratitude to Professor Dr. Taufiq Yap Yun Hin, chairman of my supervisory committee, for all his tremendous support, guidance and advice during the accomplishment of my study. My sincere thanks are also to my supervisory committee member, Professor Dr. Zulkarnain Zainal for his helps, encouragements, suggestions and constructive comments throughout the period of my study. Greatly appreciate all the help they availed to me while pursuing my studies.

I would also like to thank to all staff and officer members of faculty of science UPM for the assistance and sample analysis work. Not forget to officers in Electron Microscopy Unit, Institute Bioscience UPM for their service and help in TEM, SEM-EDX analyses. Special appreciations are also to all lecturer, lab mates and PutraCAT members for their cooperation, idea and discussion in completion my lab work and thesis writing.

Acknowledgements are also extended to all my friends at Universiti Putra Malaysia, especially to the Indonesian Students Association (PPI-UPM), my house mate R719 and R502 for their friendship during the period of my study. Finally my deepest gratitude goes to my parents and all my family members for their continuous moral support throughout my study.
I certify that a Thesis Examination Committee has met on 1st February 2012 to conduct the final examination of Sudarno on his thesis entitled "Preparation and Evaluation of Ni/CeO$_2$-SiO$_2$ Catalyst for Dry Reforming of Methane with Carbon Dioxide in Syngas Production" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Gwendoline Ee Cheng Lian, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Manshor bin Hj. Ahmad @ Ayob, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Tan Yen Ping, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sugeng Triwahyono, PhD
Associate Professor
Ibn Sina Institute for Fundamental Science Studies
Universiti Teknologi Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Taufiq Yap Yun Hin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zulkarnain Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SUDARNO

Date: 1 February 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Table/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE CONTENT</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION 1
 1.1 Background of Research 1
 1.1.1 World Problem Issues 1
 1.1.2 Biogas Potential and Utilization 4
 1.2 Dry Reforming of Methane with Carbon dioxide 6
 1.3 Scope of Works 7
 1.4 Problem Statement 7
 1.5 Objectives 8
 1.7 Hypothesis 9

2. LITERATURE REVIEW 10
 2.1 Introduction 10
 2.2 Catalysts and Catalysis 10
 2.3 Types of Catalysts 12
 2.2.1 Homogenous Catalysts 12
 2.2.2 Heterogeneous Catalysts 12
 2.4 The Nature of the Catalytic Process 14
 2.5 Synthesis Gas (Syngas)
 2.5.1 Syngas Utilization 15
 2.5.2 Syngas Production 18
 2.6 Dry Reforming of Methane with Carbon dioxide 23
 2.6.1 Process Chemistry 24
 2.6.2 Reaction Mechanism 25
 2.7 Carbon Formation 30
 2.8 Characterization Technique of Catalysts Properties 32
2.9 Catalyst for DRMC process 33
2.10 Development of Nickel Based Catalyst 35
 2.7.1 Support Selection 37
 2.7.2 Promoter Addition 38

3. METHODOLOGY 42
 3.1 Materials and Equipment 42
 3.2 Support Preparation 43
 3.2.1 CeO\textsubscript{2} preparation : Thermal Decomposition 43
 3.2.2 Modified CeO\textsubscript{2}-SiO\textsubscript{2} Support Preparation 43
 3.3 Supported Nickel Catalyst Preparation 45
 3.4 Sample Characterizations 46
 3.4.1 Energy Dispersive X-ray Fluorescent Analysis 47
 3.4.2 X-ray diffraction 47
 3.4.3 Surface Area Measurements 48
 3.4.4 Scanning Electron Microscopy 49
 3.4.5 Transmission Electron Microscopy 50
 3.4.6 H\textsubscript{2} Temperature-Programmed Reduction 50
 3.4.7 CO\textsubscript{2} Temperature Programmed Desorption 51
 3.4.8 Analysis of Used Catalysts 51
 3.5 Catalytic Evaluation 52

4. RESULTS AND DISCUSSION 56
 4.1 Influence of Ceria Addition on Ni/CeO\textsubscript{2}-SiO\textsubscript{2} Catalysts for DRMC 56
 4.1.1 Physical Properties 56
 4.1.2 Crystallographic and Structural Properties 60
 4.1.3 H\textsubscript{2} Temperature-Programmed Reduction 63
 4.1.4 CO\textsubscript{2} Temperature-Programmed Desorption 66
 4.1.5 Reduction of Catalysts 68
 4.1.6 Transmission Electron Microscopy 69
 4.1.7 Catalytic Evaluation 71
 4.1.8 Analysis of Used Catalysts 81
 4.1.9 Summary 87
 4.2 Effects of Different Preparation Methods of Supports and Catalysts for DRMC 88
 4.2.1 Physical Properties 88
 4.2.2 Crystallographic and Structural Properties 93
 4.2.3 H\textsubscript{2} Temperature Programmed Reduction 96
 4.2.4 CO\textsubscript{2} Temperature-Programmed Desorption 99
4.2.5 Reduction of Catalysts 100
4.2.6 Transmission Electron Microscopy 102
4.2.7 Catalytic Evaluation 104
4.2.8 Analysis of Used Catalysts 112
4.2.9 Summary 120

5 CONCLUSIONS 121
 5.1 General Conclusions 121
 5.2 Recommendation

REFERENCES 124
APPENDICES 140
BIODATA OF STUDENT 148
LIST OF PUBLICATION 149