

UNIVERSITI PUTRA MALAYSIA

STRUCTURE, OPTICAL AND ELECTRICAL PROPERTIES OF POLYANILINE ENCAPSULATED NICKEL, COBALT, AND CHROMIUM NANOPARTICLES SYNTHESIZED BY GAMMA RADIATION

ABDO MOHAMMED ALI MEFTAH

FS 2012 15

STRUCTURE, OPTICAL AND ELECTRICAL PROPERTIES OF POLYANILINE ENCAPSULATED NICKEL, COBALT, AND CHROMIUM NANOPARTICLES SYNTHESIZED BY GAMMA RADIATION

ABDO MOHAMMED ALI MEFTAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2012

In the Name of Allâh, the Most Gracious, the Most Merciful

ان الله يمسك السماوات والارض ان تزولا ولئن زالتا ان امسكهما من احد من بعده انه كان حليما غفور ا

Surely Allah upholds the heavens and the earth lest they come to naught; and if they should come to naught, there is none who can uphold them after Him; surely He is the Forbearing, the Forgiving.

DEDICATION

To the Soule of my brother Emad Yahya rewards him with paradise. To my patientful wife Dr.Muneera , my son and daughter Muhib and Maria and those who are sincerely pray for my success.

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Doctor of Philosophy

STRUCTURE, OPTICAL AND ELECTRICAL PROPERTIES OF POLYANILINE ENCAPSULATED NICKEL, COBALT, AND CHROMIUM NANOPARTICLES SYNTHESIZED BY GAMMA RADIATION

By

ABDO MOHAMMED ALI MEFTAH

January 2012

Chairman: Professor Elias Saion, PhD

Faculty: Science

Nanomaterials have attracted much attention recently because of their many applications including in catalysis, microelectronics, biomedicine and photovoltaics. The composites of conducting polymer – magnetic metal nanoparticles are promising candidates based on the fact that the small sized particles enhance their physical properties while the conducting polymer matrix present electrical host – guest interaction to have a new magneto-electric phenomenon to occur at the same time, allowing coupling between magnetic and electric properties for future devices. Among the conducting polymers, polyaniline (PANI) has been of particular interest because of its environmental stability and controllable electrical conductivity and dissipation of electrostatic charges. In this work PANI was used to encapsulate nickel (Ni), cobalt (Co), and chromium (Cr) magnetic nanoparticles in polyvinyl alcohol (PVA) aqueous and film matrix. The solution composites were synthesized from aniline monomer (0.067 g), nickel, cobalt, and chromium chlorides at different concentrations (0.017, 0.025, 0.033, 0.042, and 0.5 g), and PVA (0.1 g), 10 ml

deionized water and completed by irradiation at doses of 0, 1, 2, 3, 4, 5 and 6 kGy. The film composites were made from aniline monomer (4 g), nickel, cobalt, and chromium chlorides at different concentrations (1, 1.5, 2, 2.5, and 3 g), and PVA (6 g) and completed by gamma irradiation at doses of 0, 10, 20, 30, 40 and 50 kGy. No chemical reducing or oxidising agent was used to synthesis metal nanoparticles or PANI.

The structural and morphology of metal nanoparticles in PVA solutions were studied using x-ray diffraction, atomic force microscopy, photon cross correlation spectroscopy, and transmission electron microscopy. The average particle size distributions in solution were found in the range of 22 – 54 nm for Ni nanoparticles, 14 - 50 nm for Co nanoparticles and 3 - 13 nm for Cr nanoparticles. The particle sizes of metal nanoparticles were controlled by the concentration of metal ions and radiation doses. The average diameter of Ni, Co and Cr nanoparticles decreased exponentially with the increase of dose *D* and fitted the expression of $d = d_{max} - B(1$ $e^{-D/D}_0)$, with D_0 equal 2.2, 1.53, and 1.4 kGy for Ni, Co and Cr nanoparticles respectively.

A UV-visible spectrophotometer was used to measure optical characteristics of composites of PANI/Ni, PANI/Co and PANI/Cr nanoparticles. The maximum absorbance peaks λ_{max} appear at about 395, 520, 420 nm for Ni, Co, Cr nanoparticles respectively for both solution and film composites. The absorption peaks λ_{max} blue-shift towards shorter wavelengths with the increase of dose attributing to a decrease in the average diameter of metal nanoparticles with increasing dose. As a result, the conduction band increases with increase of radiation dose or decrease of particle size. The confinement effects of conducting band can be explained fundamentally in terms of the quantum mechanical description in which by reducing the nanoparticle size,

the number of atoms to form a nanoparticle is also reduced and less protons attracting the conduction electrons, thus enlarging the conduction band energy of metal nanoparticles.

The optical absorbance peaks of PANI in solution composites appear at 620, 670, and 580 nm for PANI/Ni, PANI/Co, and PANI/Cr nanoparticles respectively. However, the absorbance peaks shifted to 720, 670, and 580 nm for film composites of PANI/Ni, PANI/Co and PANI/Cr nanoparticles respectively. The band gap of PANI decreased with increase of dose and increased with increase of chloride ion concentration. When the dose increased from 10 to 50 kGy, the band gap of PANI films decreases from 1.56 to 1.4 eV and from 1.54 to 1.33 eV for 10, and 22.5 wt% NiCl₂ respectively; from 1.8 to 1.71 eV and from 1.72 to 1.67 eV for 10 and 22.5 wt% CoCl₂ respectively; and from 1.92 to 1.87 eV and from 1.89 to 1.83 eV for 10 and 22.5 wt% CrCl₃ respectively.

The conductivity measurement reveals that the dc conductivity of PANI in film composites increased with increase of dose and ion concentration. When the dose increased from 10 to 50 kGy, the conductivity of PANI decreases from 2.38×10^{-4} to 5.98×10^{-3} (S/m) and from 7.10×10^{-4} to 3.48×10^{-2} (S/m) for 10 and 22.5 wt% of NiCl₂ respectively; from 1.13×10^{-4} to 2.01×10^{-3} (S/m) and from 7.16×10^{-4} to 8.03×10^{-2} (S/m) for 10 and 22.5 wt% of CoCl₂ respectively; from 3.68×10^{-5} to 1.60×10^{-3} (S/m) and from 2.69×10^{-4} to 1.68×10^{-3} (S/m) for 10 and 22.5 wt% of CrCl₃ respectively. The dc conductivity has an exponential expression of the form: $\sigma_{dc} = \sigma_0 \exp(D/D_0)$, where the σ_0 and D_0 vary with ion concentration.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebageu memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI-CIRI STRUKTUR, OPTIK DAN ELEKTRIK KOMPOSIT POLIANILIN BERKAPSUL NIKEL, KOBALT, AND KROMIUM ZARAHNANO DISINTISIS DENGAN KAEDAH SINAR GAMMA

Oleh

ABDO MOHAMMED ALI MEFTAH

Januari 2012

Pengerusi: Profesor Elias Saion, PhD

Faculti: Sains

Bahannano telah menjadi tarikan akhir-akhir ini kerana banyak kegunaannya termasuk dalam pemangkinan, mikroelektronik, bioperubatan dan fotovoltan. Komposit polimer konduksi – zarahnano logam magnet adalah calon harapan berdasarkan kepada saiz zarah kecil yang boleh menambahbaik ciri-ciri fizik manakala matrik polimer konduksi membolehkan tindakbalas ala rumah - tetamu dengan kehadiran suatu fenomenon baharu iaitu magneto-elektrik yang berlaku pada masa yang sama untuk membenarkan hubungan di antara ciri magnet dan ciri elektrik sebagai peranti masa hadapan. Diantara polimer konduksi, polianilin (PANI) adalah yang teristimewa kerana mempunyai kesatabilan persekitaran dan keboleh kawalan kekonduksian elektrik dan penyebaran cas elektrostatik. Di sini PANI digunakan untuk menyalut zarahnano magnet nikel (Ni), kobolt (Co), and kromium (Cr) dalam larutan dan film alkohol polivinal (PVA). Komposit larutan disintisis daripada monomer analin (0.067 g), nikel, kobalt, and kromium klorida pada kepekatan berbeza (0.017, 0.025, 0.033, 0.042 dan 0.5 g), PVA (0.1 g), dan 10 ml air ternyah ion lalu disempurnakan dengan penyinaran sinar gama pada dos 0, 1, 2, 3, 4,

5 dan 6 kGy. Komposit film pula disintisis daripada monomer analin (4 g), nikel, kobalt, and kromium klorida pada kepekatan berbeza (1, 1.5, 2, 2.5, and 3 g) dan PVA (6 g) lalu disempurnakan dengan penyinaran sinar gama pada dos 0, 10, 20, 30, 40 dan 50 kGy. Tiada bahan kimia penurunan atau pengoksidan digunakan untuk sintensis zarahnano logam atau PANI.

Struktur dan marfologi zarahnano logam dalam larutan PVA dikaji dengan menggunakan The structural and morphology of metal nanoparticles in solutions were studied using belauan sinar-x, mikroskopi daya atom, spektroskopi korelasi silang foton dan mikroskopi electron transmisi. Taburan saiz zarah purata dalam larutan ialah dalam julat 22 - 54 nm untuk zarahnano Ni, 14 - 50 nm untuk zarahnano Co dan 3 - 13 nm untuk zarahnano Cr. Saiz zarahnano logam dikawal oleh kepekatan ion logam dan dos sinaran. Diameter purata zarahnano Ni, Co dan Cr berkurangan secara eksponen dengan pertambahan dos D dan memuaskan ungkapan $d = d_{\text{max}} - B(1 - e^{-D/D}_0)$, dengan D_0 bersamaan dengan 2.2, 1.53, dan 1.4 kGy untuk masing-masing zarahnano Ni, Co and Cr.

Spektroskopi UV-cahaya tampak telah digunakan untuk mengukur ciri-ciri optik komposit PANI/Ni, PANI/Co and PANI/Cr zarahnano. Puncak penyerapan maksimum λ_{max} berlaku pada dearah 395, 520, 420 nm untuk masing-masing zarahnano Ni, Co, Cr. Puncak penyerapan maksimum λ_{max} melakukan anjakan-biru ke panjang gelombang yang lebih pendek dengan pertambahan dos kerana penggecilan saiz zarah dengan pertambahan dos. Kesan kepungan bagi jalur konduksi ini pada asasnya telah terangkan menurut mekanik kuantum dimana dengan pengurang saiz zarah bilangan atom untuk membentuk zarahnano adalah kecil bilangannya dan dengan ini kurang tarikan proton kepada electron konduksi, maka tenaga jalur konduksi zarahnano logam menjadi besar. Puncak penyerapan optik PANI dalam komposit larutan berlaku pada 620, 670, dan 580 nm untuk masing-masing PANI/Ni, PANI/Co, dan PANI/Cr zarahnano. Bagaimanapun puncak penyerapan beranjak kepada 720, 670 dan 580 nm untuk komposit film masing-masing PANI/Ni, PANI/Co dan PANI/Cr zarahnano. Tenaga celah PANI berkurangan dengan dos dan bertambah dengan kepekatan ion klorida. Apabila dos ditambah daripada 10 ke 50 kGy, tenaga celah PANI berkurangan daripada 1.56 ke 1.4 eV dan daripada 1.54 ke 1.33 eV untuk masing-masing10, dan 22.5 wt% NiCl₂; daripada 1.8 ke 1.71 eV dan daripada 1.72 to 1.67 eV untuk masing-masing 10 dan 22.5 wt% CoCl₂; dan daripada 1.92 ke 1.87 eV dan daripada 1.89 to 1.83 eV untuk masing-masing 10 dan 22.5 wt% CrCl₃.

Pengukuran konduksi elektrik menunjukkan bahawa kekonduksian dc komposit film PANI bertambah dengan dos dan kepekatan ion. Apabila dos ditambah daripada 10 ke 50 kGy, kekonduksian PANI bertambah daripada 2.38×10^{-4} ke 5.98×10^{-3} (S/m) dan daripada 7.10×10^{-4} ke 3.48×10^{-2} (S/m) untuk masing-masing 10 and 22.5 wt% NiCl₂; daripada 1.13×10^{-4} ke 2.01×10^{-3} (S/m) dan daripada 7.16×10^{-4} ke 8.03×10^{-2} (S/m) untuk masing-masing 10 and 22.5 wt% CoCl₂; daripada 3.68×10^{-5} ke 1.60×10^{-3} (S/m) dan daripada 2.69×10^{-4} ke 1.68×10^{-3} (S/m) untuk masing-masing 10 dan 22.5 wt% CrCl₃. Kekonduksian dc mempunyai ungkapan eksponen dalam bentuk: $\sigma_{dc} = \sigma_0 \exp (D/D_0)$, dimana σ_0 dan D_0 berubah mengikut kepekatan ion.

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to Prof. Dr. Elias Saion, Chairman of the Supervisory Committee who has been very helpful in providing me intellectual guidance, as well as to the other members of the Committee, namely Prof. Dr. Mohammad Maarof H. A. Moksin, Associate Prof. Hishamuddin Zainuddin who are sincerely helped me throughout my studies. Also sincere thanks and acknowledge to Mr. Mohammad Zain for his assistance and encouragement. Thanks are expressed to Nuclear Energy Agency Malaysia-Bangi (NEAM) and Institute of Nuclear Science, Universiti Kebangsaan Malaysia for allowing me to irradiate my research samples. I extend my words of thanks to Institute of Bioscience, Universiti Putra Malaysia for allowing me to get TEM and SEM for my sample. I should thank my father and my mother for my support of my receiving high education and also I would like to thank my wife Dr. Muneera, my son and daughter Muhib & Maria for their patience, encouragement and understanding.

I certify that a Thesis Examination Committee has met on 17 January 2012 to conduct the final examination of Abdo Mohammed Ali Meftah on his thesis entitled "Structure, optical and electrical Properties of Polyaniline Encapsulated - (Ni, Co, Cr) nanoparticles synthesized by gamma radiation" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Prof. Madya Dr. Zainal Abidin b Talib, PhD

Professor Association Department of Physics Faculty of Science Universiti Putra Malaysia (Chairman)

Y. Bhg. Prof. Dr. Abdul Halim b Shaari, PhD

Professor Department of Physics Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Y. Bhg. Prof. Dr. Wan Mahmood b Mat Yunus, PhD

Professor Department of Physics Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Y. Bhg. Prof. Dr. Yas Mohammed Al- Hadeethi, PhD

Professor Dipartimento Di Fisica" G. Occhialini

Universita Degli Studi Di Milano-Boicocca 20126 Piazza Della Scienza Italy (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Elias Bin Saion, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohamad Maarof H. A. Moksin, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Hishamuddin Zainuddin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at universiti Putra Malaysia or at any other institution.

ABDO MOHAMMED ALI MEFTAH

Date: 17 January 2012

TABLE OF CONTENTS

		Page
DEDICA	ΓΙΟΝ	iii
ABSTRA	СТ	iv
ABSTRA	K	vii
ACKNOV	VLEDGEMENTS	х
APPROV	AL	xi
DECLAR	ATION	xiii
LIST OF	TABLES	xxiii
LIST OF	FIGURES	xxvii
LIST OF	ABBREVIATIONS	xliii
СНАРТЕ	R	
1	INTRODUCTION	1
	1.1 Background of radiation processing of polymers and nanomaterials	1
	1.2 Gamma radiation synthesis	2
	1.3 Metal nanoparticles	3
	1.3.1 Nickel (Ni) Nanoparticles	4
	1.3.2 Cobalt (Co) Nanoparticles	5
	1.3.3 Chromium (Cr) Nanoparticles	7
	1.4 Polyaniline (PANI) conducting polymer	8
	1.5 Polyaniline/ metal nanoparticles	10
	1.6 Statement of the Problems	12
	1.7 Significant of the Study	13
	1.8 Scope of the Study	13
	1.9 Objectives of the Study	14
	1.10 Thesis Outline	15

2 LITERATURE REVIEW

 $\overline{()}$

2.1 Historical background of metal-polymer nanocomposites	16
2.2 Metal-polymer nanocomposites and nanomaterials	18
2.3 History of metal nanoparticles	20
2.4 General on nanoscience and nanotechnology	23
2.5 Classes of nanomaterials	26
2.6 Definition of nanoparticles	28
2.7 Size effect and special properties of nanoparticles	29
2.7.1 Surface-dependent particle properties	29
2.7.2 Size-dependent particle properties	29
2.7.3 Size-dependent quantum effects	29
2.7.3.1 Activation of particle surface	29
2.7.3.2 Increase of surface area	31
2.8 Stabilization of Transition Metal Nanoparticles	32
2.8.1 Steric Stabilization	32
2.8.2 Electrostatic Stabilization	33
2.8.3 Stabilization by Ligand or Solvent	34
2.8.4 Polymer Stabilized Nanoparticles	36
2.9 Noble metal nanoparticles	37
2.10 Classification of nanoparticle techniques synthesis of nanoparticles	38
2.10.1 Solution techniques synthesis of nanoparticles	39
2.10.1.1 Solution phase chemical reduction method	39
2.10.1.2 Solution phase electrochemical method	41
2.10.1.3 Liquid metals atomization by electrospraying method	42
2.10.1.4 Sol –Gel method	43
2.10.1.5 Solution precipitation method	43
2.10.1.6 Water – Oil microemulsion method	45
2.10.1.7 Polyol method	46
2.10.2 Radiation techniques synthesis of nanoparticles.	48

2.10.2.1 Ultrasound irradiation or sonochmical method	48
2.10.2.2 Photo-reduction by UV-irradiation method	49
2.10.2.3 Ionizing radiation reduction method	51
2.10.2.4 Synthesis through microwave-assisted method	53
2.10.3 Solid state techniques synthesis of nanoparticles	53
2.11 Characterization of metal nanoparticles	54
2.11.1 X-ray diffraction of Ni, Co and Cr	54
nanoparticles 2.11.2 TEM morphology of Ni, Co and Cr nanoparticles	58
2.11.3 Optical properties of Ni, Co and Cr nanoparticles	63
2.12 Applications of metal nanoparticles and their composites	66
2.12.1 Surface - Enhanced Raman Spectroscopy (SERS)	67
2.12.2 Metal - Enhanced Florescence	69
2.12.3 Enhanced Rayleigh (Mie) scattering.	70
2.12.4 Surface-Enhanced Infrared Absorbance Spectroscopy	71
2.12.5 Catalysts	72
2.12.6 Metal nanoparticles as biosensors	73
2.12.7 Nano-Electronics and Nanophotonics	74
2.13 Background of conducting polymers	76
2.13.1 Brief history of conducting polymers	76
2.13.2 Type of Conducting Polymers	79
2.13.3 Fundamentals of conducting polymer	80
2.13.4 Conduction Mechanism	82
2.13.5 Polarons, Bipolarons, and Solitons	83
2.13.6 Conducting Polyaniline – metal nannocomposite	86
2.13.7 Polyvinyl alcohol (PVA)	88
2.14 Syntheses of polyaniline	89
2.14.1 Chemical method	89

2.14.2 Electrochemically method	91
2.14.3 UV photo synthesis	93
2.14.4 γ-rays synthesis	94
2.15 Characterization of PANI and PANI nanocomposites	96
2.15.1 Chemical structures and oxidation states of PANI and PANI nanocomposites	96
2.15.2 Morphological structure of PANI and PANI nanocomposites	97
2.15.3 Optical properties of PANI and PANI nanocomposites	101
2.15.4 Electrical conductivity of PANI and PANI nanocomposites	107
2.16 Applications of conducting polymers	112
2.16.1 Shielding of electromagnetic radiation	113
2.16.2 Rechargeable Batteries and Supercapacitors	115
2.16.2.1 Rechargeable Batteries	115
2.16.2.2 Supercapacitors	116
2.16.3 Electronic Devices	117
2.16.3.1 Light Emitting Diodes (LEDs)	117
2.16.3.2 Solar Cells	119
Dye-Sensitized Solar Cell	120
2.16.4 Chemical Sensor and Biosensor	121
THEORETICAL	123
3.1 Radiation Interaction with Matter	123
3.1.1 Type of Ionizing Radiation	123
3.1.2 Gamma ray	126
3.2 Gamma Ray Interactions	127
Absorbed Dose	128
3.2.1 Photoelectric effect	130
3.2.2 Compton scattering	132
3.2.3 Pair Production	134

xvii

3

3.3 Radiation Effects	136
	136
3.3.1 Ionization and excitation of molecules	
3.3.2 Radiolysis	137
3.4 Optical Absorption of molecular	138
3.4.1 Transitions involving π , σ , and <i>n</i> elec	trons 139
3.5 Absorption of light	141
3.5.1 Optical absorption and Lambert's La	w 141
3.5.2 Absorption edge	143
3.5.3 Optical band gap	144
3.6 Fundamentals of metallic nanoparticles	145
3.6.1 Conduction band energy of metal nano	oparticles 145
3.7 Solid state theory for optical constants of m	netals 151
3.7.1 Drude's Model of electron	152
3.7.2 Drude-Sommerfeld model	153
3.7.3 Metallic optical responses at different	size scales 154
3.8 Basic physical principles of plasmonics	156
3.8.1 Surface Plasmon Resonance (SPR)	157
3.8.1.1 Size Dependence of the Surface	Plasmon 159
3.8.1.2 Shape effect	160
3.8.1.3 Local refractive index dependent	ce 160
3.8.1.4 Line width of Surface Plasmon F	Resonance 161
3.9 The Optical Extinction of Nanoparticles	162
3.9.1 The Simple Drude Model Describes M Nanoparticles	fetal 167
3.10 Quantum theory of metal nanoparticles	169
3.11 Characterization of Nanoparticles	173
3.12 Electrical Conductivity	175
3.14 Impedance analysis	176

	MATERIALS AND METHOD	178
4	4.1 Materials	178
	4. 1.1. Aniline Monomer (Ani)	178
	4.1.2. Nickel chloride	178
	4.1.3 Cobalt chloride	179
	4.1.4 Chromium Chloride	179
	4.2 Synthesis of metal nanoparticles in colloidal solution	179
	4.2.1 Preparation of composites of PANI/Ni nanoparticles	179
	4.2.2 Preparation of composites of PANI/Co	180
	4.2.3 Preparation of composites of PANI/Cr nanoparticles	181
	4.3 Synthesis of metal nanoparticles in colloidal films	181
	4.3.1 Preparation of composites of PANI/Ni nanoparticles	181
	4.3.2. Preparation of composites of PANI /Co	182
	4.3.3 Preparation of composites of PANI/Cr nanoparticles	183
	4.4 Irradiation for PANI/Ni, PANI/Co and PANI /Cr nanoparticles	183
	4.5 Characterization PANI and Metal Nanoparticles	184
	4.5.1 X-ray diffraction (XRD) and crystallinity	185
	4.5.2 Photon Cross Correlation Spectroscopy (PCCS)	188
	4.5.3 Atomic Force Microscopy (AFM) and morphology study	193
	4.5.5 Transmission Electron Microscopy (TEM) and morphology study	195
	4.5.6 Scanning Electron Microscopy (SEM) and morphology study	198
	4.5.7 UV-visible spectroscopy and absorbance measurements	200
	4.5.8 Impedance analyzer and conductivity measurements	204
	RESULTS AND DISCUSSION	206

5.1 Oxidation and reduction processes by ionizing radiation 206

 \bigcirc

5.1.1 The formation of PANI/Ni, PANI/Co and PANI/Cr nanoparticles	206
5.1.2 Colour change	212
5.1.2.1 Sol Samples	212
5.1.2.2 Film Samples	215
5.2 X-ray diffraction (XRD) analysis	218
5.2.1 XRD spectra of pure and irradiated PVA samples	218
5.2.2 XRD spectra of composite of PVA/ PANI/Ni nanoparticles	220
5.2.3 XRD spectra of composite of PVA/PANI/Co nanoparticles	223
5.2.4 XRD spectra of composites of PVA/ PANI/Cr nanoparticles	225
5.3 The Average nanoparticles diameter measurement using PCCS	227
5.3.1 Particle size of Ni nanoparticles in PVA of solution samples	228
5.3.2 Particle size of Co nanoparticles in PVA of solution samples	232
5.3.3 Particle size of Cr nanoparticles in PVA of solution samples	234
5.4 Atomic Force Microscopy (AFM)	237
5.4.1 AFM morphology of Ni nanoparticles	237
5.4.2 AFM morphology of Co nanoparticles	239
5.4.3 AFM morphology of Cr nanoparticles	240
5.5 Transmission Electron Microscopy (TEM)	241
5.5.1 TEM micrographs of Ni nanoparticles stabilized by PVA	242
5.5.2 TEM micrographs of Co nanoparticles stabilized by PVA	248
5.5.3 TEM micrographs of Cr nanoparticles stabilized by PVA	253
5.6 The influence of radiation dose and ion concentration on particle size	257
5.6.1 The average size of Ni nanoparticles in PVA	258
5.6.2 The average size of Co nanoparticles in PVA	262

5.6.3 The average size of Cr nanoparticles in PVA	264
5.7 Scanning Electron Microscopy (SEM)	266
5.7.1 SEM morphology of PANI/Ni nanoparticles	266
5.7.2 SEM morphology of PANI/ Co nanoparticles	268
5.7.3 SEM morphology of PANI/ Cr nanoparticles	269
5.8 UV-visible Optical Absorption of PANI/Ni, PANI/Co, PANI/Cr nanoparticles sol samples	271
5.8.1 Optical characteristics of PANI/Ni nanoparticles in solution	273
5.8.1.1 UV-Visible spectra of PANI/Ni nanoparticles in solution	273
5.8.1.2 Conduction band energy of Ni nanoparticles	281
5.8.1.3 Band gap (Eg) of PANI in solution	283
5.8.2 Optical characteristics of PANI/Co nanoparticles in solution	285
5.8.2.1 UV-Visible spectra of PANI/Cr nanoparticles in solution	285
5.8.1.2 Conduction band energy of Co nanoparticles	292
5.8.2.3 Band gap (Eg) of PANI in solution	294
5.8.3 Optical characteristics of PANI/Cr nanoparticles in solution	295
5.8.3.1 UV-Visible spectra of PANI/Cr nanoparticles in solution	295
5.8.3.2 Conduction band energy of Cr nanoparticles	303
5.8.3.3 Band gap (Eg) of PANI in solution	305
5.9 UV-visible Optical Absorption of PANI/Ni, PANI/Co, PANI/Cr nanoparticles films.	306
5.9.1 Optical characteristics of PANI/Ni nanoparticles films	306
5.9.1.1 UV-Visible spectra of PANI/Ni nanoparticles films	306
5.9.1.2 Conduction band energy of Ni nanoparticles films	314
5.9.1.3 Band gap (Eg) of PANI/Ni nanoparticles films	315
5.9.2 Optical characteristics of PANI/Co nanoparticles films	317
5.9.2.1 UV-Visible spectra of PANI/Conanoparticles films	317

5.9.2.2 Conduction band energy of Co nanoparticles	324	
5.9.2.3 Band gap (Eg) of PANI/Co nanoparticles films		
5.9.3 Optical characteristics of PANI/Cr nanoparticles films	327	
5.9.3.1 UV-Visible spectra of PANI/Cr nanoparticles films	327	
5.9.3.2 Conduction band energy of Cr nanoparticles	334	
5.9.3.3 Band gap (Eg) of PANI/Cr nanoparticles films	335	
5.10 Electrical conductivity of film samples	337	
5.10.1 Conductivity of irradiated PVA films	337	
5.11 Conductivity of PVA/ PANI/Ni nanoparticles films	340	
5.11.1 DC conductivity of PANI/Ni nanoparticle films by extrapolation	343	
5.11.2 DC conductivity of PANI/Ni nanoparticles film by Cole-Cle plots	345	
5.12 conductivity of of PVA/ PANI/ Co nanoparticles films	352	
5.12.1 DC conductivity of PANI/Co nanoparticle films by extrapolation	355	
5.12.2 DC conductivity of PANI/ Co nanoparticles determined from Cole-Cole Plots	357	
5.13 Conductivity of PVA/ PANI/Cr nanoparticles films	362	
5.13.1 DC conductivity of PANI/Cr nanoparticle films by extrapolation	365	
5.13.2 The dc conductivity of PANI/ Cr nanoparticles determined from Cole-Cole Plots	367	
CONCLUSION AND FUTURE WORKS	373	
6.1 Conclusion	373	
6.2 Euture works	375	
	375	
ADENDIY	370 407	
	407	
DIODATA OF THE STUDENT	41U	
LIDI OF FUBLICATIONS	411	

C