EFFECT OF CHROMOBACTERIUM VIOLACEUM AND QUORUM SENSING ON THE GROWTH OF GREEN BEAN (VIGNA RADIATA) AND PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR)

LOKE WAI KEONG

FP 2011 54
EFFECT OF CHROMOBACTERIUM VIOLACEUM AND QUORUM SENSING ON THE GROWTH OF GREEN BEAN (VIGNA RADIATA) AND PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR)

LOKE WAI KEONG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2011
EFFECT OF CHROMOBACTERIUM VIOLACEUM AND QUORUM SENSING ON THE GROWTH OF GREEN BEAN (VIGNA RADIATA) AND PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR)

By

LOKE WAI KEONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2011
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECT OF CHROMOBACTERIUM VIOLACEUM AND QUORUM SENSING ON THE GROWTH OF GREEN BEAN (VIGNA RADIATA) AND PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR)

By

LOKE WAI KEONG

December 2011

Chair: Associate Professor Halimi Mohd Saud, PhD

Faculty: Agriculture

Chromobacterium violaceum is a Gram-negative facultative anaerobic bacteria and pathogenic to human with high fatality rate. C. violaceum inhabits in soil and water in the tropical and subtropical regions of the world. The tropical climate in Malaysia offers a suitable environment for the growth of C. violaceum and it is believed that it is highly distributed in the soil and water in Malaysia. Soil is important in agriculture and the soil surface is most often in contact with people during their daily activities. However, the understanding of C. violaceum distribution has not been fully revealed especially in local soils and the effects on agriculture are still unknown. The production of antibiotics and hydrogen cyanide by C. violaceum was suspected as a possible compound that to give a negative impact on crops and beneficial microbes present in the soil. The main objective of this study was to determine the effect of Chromobacterium violaceum on plant-microbe interaction and quorum sensing mechanism. In this study, C. violaceum was isolated from 0-5 cm depth of the soil covered with grass surface in Universiti Putra Malaysia golf course and football
field. We found the density of *C. violaceum* in 5 g soil were higher after a raining period about 1×10^7 c.f.u. in golf course and 7×10^7 c.f.u. in football field compared to usual non-rainy day where only 9×10^4 c.f.u. in golf course and 6×10^5 c.f.u. in football field. The *C. violaceum* also showed the oligophile characteristic that allowed them to grow in a wider range of soil and water areas. *C. violaceum* which reached quorum level inhibited the growth of green bean seedling as much as 86.5% for the shoot length and 92.1% for the root length. However inhibition was reduced to 37.5% for the shoot and 17.5% for root if the quorum level of *C. violaceum* was not reached under aseptic environment. Furthermore sterilized inoculant (killed) which has not reached quorum level did not affect the growth of green bean seedlings. These indicated that quorum sensing in *Chromobacterium violaceum* was a factor that determines its inhibitory effect on seedling growth. *C. violaceum* also have the same effect on PGPR where *Chromobacterium violaceum* that reached quorum level kill the selected PGPR; *Azospirillum brasilense* Sp7 (Gram negative), *Rhizobium* UPMR1102 (Gram negative) and *Bacillus sphaericus* UPMB10 (Gram positive). This study also showed that catabolite repression occurred in *C. violaceum* and the operon to controlling the genes for production of purple pigment and other antibiotics were catabolite-sensitive when the operon was not maximally expressed. The information about catabolite sensitivity in pathogenic *C. violaceum* can be a very useful tool in future research.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN CHROMOBACTERIUM VIOLACEUM DAN PENDERIAAN KUORUM KEATAS TUMBESARAN KACANG HIJAU (VIGNA RADIATA) DAN RIZOBAKTERIA PENGGALAK TUMBESARAN (PGPR)

Oleh

LOKE WAI KEONG

Disember 2011

Pengerusi: Profesor Madya Halimi Mohd Saud, PhD

Fakulti: Pertanian

Chromobacterium violaceum adalah bacteria Gram-negatif, anaerobik fakultatif dan patogenik kepada manusia dengan kadar kematian yang tinggi. *C. violaceum* hidup di dalam tanah dan air yang ada di kawasan tropika dan sub tropika. Iklim tropika di Malaysia memberikan persekitaran yang sesuai kepada *Chromobacterium violaceum* dan dipercayai banyak terdapat di dalam persekitaran tanah dan air di Malaysia. Tanah adalah penting dalam pertanian dan permukaan tanah juga merupakan bahagian yang paling kerap disentuh oleh orang ramai semasa kegiatan harian mereka. Kefahaman terhadap sebaran *C. violaceum* masih rendah terutamanya dalam tanah tempatan dan kesan terhadap pertanian masih tidak diketahui. Penghasilan antibiotik dan hidrogen sianida oleh *C. violaceum* dipercayai adalah sebatian yang memberi kesan negatif kepada tanaman dan mikrob yang berfaedah di dalam tanah. Objektif utama kajian ini adalah untuk menentukan kesan *C. violaceum* ke atas interaksi tumbuhan-mikrob dan mekanisme penderiaan korum. Dalam kajian ini, *Chromobacterium violaceum* telah diasingkan dari tanah sedalam 0-5 cm dari
permukaan tanah di padang golf dan bola sepak Universiti Putra Malaysia. Kami mendapati ketumpatan C. violaceum dalam 5 g tanah adalah lebih tinggi selepas hujan kira-kira 1 X 10^7 c.f.u. di dalam padang golf dan 7 X 10^7 c.f.u. di padang bola sepak berbanding hari biasa di mana hanya 9 X 10^4 c.f.u. di padang golf dan 6 X 10^5 c.f.u. di padang bola sepak. C. violaceum juga menunjukkan ciri-ciri oligofil yang membolehkan mereka berkembang dalam pelbagai kawasan tanah dan air. Chromobacterium violaceum yang mencapai tahap korum merencatkan pertumbuhan anak benih kacang hijau sebagai sebanyak 86.5% pada panjang batang dan 92.1% pada panjang akar. Walau bagaimanapun, kadar perencatan menurun kepada 37.5% pada pajang batang dan 17.5% pada panjang akar jika tahap korum C. violaceum tidak dicapai di bawah persekitaran aseptik. C. violaceum yang tidak mencapai tahap korum dan disterilkan tidak menjejaskan pertumbuhan benih kacang hijau. Ini menunjukkan bahawa penderiaan korum dalam C. violaceum adalah satu faktor yang menentukan kesan perencatan pada pertumbuhan anak benih. C. violaceum juga mempunyai kesan yang sama pada PGPR di mana C. violaceum yang mencapai tahap korum boleh membunuh PGPR terpilih; Azospirillum brasilense Sp7 (Gram negative), Rhizobium UPMR1102 (Gram negative) and Bacillus sphaericus UPMB10 (Gram positive). Kajian ini juga menunjukkan “catabolite repression” berlaku pada Chromobacterium violaceum dari operon yang mengawal gen yang menghasilkan pigmen ungu dan antibiotik yang lain adalah sensitif-katabolit dimana operon tersebut tidak akan diekspres sepenuhnya. Maklumat kepekaan katabolit Chromobacterium violaceum adalah sangat berguna dalam kajian masa depan.
ACKNOWLEDGEMENTS

This project would never have been accomplished without the encouragement and participations of many people. Firstly, I am deeply grateful to my supervisor Associate Professor Dr. Halimi Mohd Saud who guided, shared his knowledge and made significant recommendations to improve this project. To him I extend my deepest and sincerest thanks. I also want to thank my project co-supervisor Professor Dr. Raha Abdul Rahim, who assisted me in doing this project.

Besides that, special thanks and appreciation is directed to all the members from the Department of Agriculture Technology and Institute of Tropical Agriculture for their guidance, advice, assistance and helping hand during these periods. Their valuable additional information, erudite discussions, comments and moral support help me a lot during the entire research including the laboratory work.

Heartiest thanks are extended towards my family, who has supported me through thick and thin in UPM, with their love, care and understanding, nothing is impossible without them. Last but not least, my grateful thanks to my Lab mates and friends for their help and support. Thank you.
I certify that a Thesis Examination Committee has met on 22 December 2011 to conduct the final examination of Loke Wai Keong on his thesis entitled “Effect Of Chromobacterium violaceum and Quorum Sensing on the Growth of Green Bean (Vigna radiata) and Plant Growth-Promoting Rhizobacteria” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Mihdzar b Abdul Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Radziah bt Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Kamaruzaman b Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Koshy Philip, PhD
Associate Professor
Faculty of Science
Universiti Malaya
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 October 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Raha Abdul Rahim, PhD
Professor
Faculty of Biotechnology and Molecular Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LOKE WAI KEONG

Date: 22 December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Chromobacterium violaceum

2.2 Determination of violacein and Chromobacterium violaceum

2.3 Genome structure

2.4 Pathology

2.4.1 Biofilm

2.4.2 Advantages of biofilm to microorganisms

2.5 Quorum Sensing

2.5.1 Autoinducer molecules

2.5.2 Quorum sensing mechanism in Gram-negative bacteria

2.6 Production of antibiotics and the effect on microorganisms

2.7 Production of cyanide and the effect on plants

2.8 Factors influencing quorum sensing system

2.8.1 Plants

2.8.2 Bacteria

2.9 Catabolite Repression

3 CHARACTERIZATION OF CHROMOBACTERIUM VIOLACEUM FROM LOCAL SOILS

3.1 Introduction

3.2 Materials and Methods

3.2.1 Isolation

3.2.2 Identification

3.2.3 Characterization

3.3 Results and Discussions

3.4 Conclusion
INHIBITION OF *CHROMOBACTERIUM VIOLACEUM* ANTIBIOTICS PRODUCTION BY CATABOLITE REPRESSION

4.1 Introduction 25
4.2 Materials and Methods 26
4.3 Results and Discussion 27
4.4 Conclusion 29

THE EFFECT OF *CHROMOBACTERIUM VIOLACEUM* ON GREEN BEAN (*VIGNA RADIATA*) AND SELECTED PLANT GROWTH-PROMOTING RHIZOBACTERIA (PGPR) IN VITRO CONDITION

5.1 Introduction 30
5.2 Materials and Methods 31
5.2.1 Preparation of growth medium 31
5.2.2 Preparation of *Chromobacterium violaceum* in quorum level 31
5.2.3 The effect of *Chromobacterium violaceum* on green bean (*Vigna radiata*) 33
5.2.4 The effect of *Chromobacterium violaceum* on selected PGPR 33
5.2.4.1 Method 1 – Interaction 34
5.2.4.2 Method 2 – Non interaction 34
5.3 Results and Discussions 37
5.3.1 The effect of *Chromobacterium violaceum* on green bean (*Vigna radiata*) 37
5.3.2 The effect of *Chromobacterium violaceum* on selected PGPR 39
5.3.2.1 Method 1 – Interaction 39
5.3.2.2 Method 2 – Non interaction 40
5.4 Conclusion 44

SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 47
BIODATA OF STUDENT 57
LIST OF PUBLICATIONS 58