EFFECTS OF HOT-AIR DRYING ON PHYSICOCHEMICAL CHARACTERISTICS, FLAVOUR PROFILES AND SENSORY ACCEPTANCE OF *Citrus hystrix* AND *Etlingera elatior* Jack

NURUL HANISAH JUHARI

FSTM 2012 6
EFFECTS OF HOT-AIR DRYING ON PHYSICOCHEMICAL CHARACTERISTICS,
FLAVOUR PROFILES AND SENSORY ACCEPTANCE OF Citrus hystrix AND
Etlingera elatior Jack

By

NURUL HANISAH JUHARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Master of Science

June 2012
Especially dedicated to my beloved parents, my family and also my husband. Thank you for your unconditional support with my studies. Thank you for believing in me; for allowing me to further my studies. Please do not ever doubt my dedication. I love you.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF HOT-AIR DRYING ON THE PHYSICOCHEMICAL CHARACTERISTICS, FLAVOUR PROFILES AND SENSORY ACCEPTANCE OF *Citrus hystrix* AND *Etlingera elatior* Jack

By

NURUL HANISAH JUHARI

June 2012

Chair: Associate Professor Lasekan Olusegun, PhD

Faculty: Food Science and Technology

Herbs and spices play important roles in Malay cuisine. The usage of kaffir lime (*C. hystrix*) leaves and torch ginger (*E. elatior*) are not only limited to the addition of flavour and enhancement of palatability of food but they also act as antioxidants. Both herbs were grown for both flavouring and medicinal purposes. However, this herb is highly perishable in nature, have short shelf life and deteriorate rapidly after harvesting that leads to loss of flavour and quality. So, drying is an important technology for preserving the product quality and also preventing the spoilage of the product during storage. Thus, this study was conducted to optimize the effects of hot-air drying conditions (drying time, drying temperature and loading capacity) on physicochemical characteristics (moisture content, water activity, texture and colour) of *C. hystrix* and *E. elatior* that could be used for a high food grade spicing material. Secondly, the flavour profiles of *C. hystrix* and *E. elatior* were determined between fresh and optimally dried herbs. The herbs inclusion/infusion parameters levels (size, temperature and concentration of
herbs) on sensory acceptance of Vichyssoise soup and sorbet were also optimized. The results showed that the best response for torch ginger, within the range studied, was reached when the drying time was 4.1 h, the drying temperature, 79 °C and loading capacity, 0.7 kg/m² respectively. On the other hand, the overall optimum conditions that resulted in desirable dried kaffir lime leaves, was achieved when the drying time was 4.9 h, the drying temperature, 60 °C and loading capacity, 1.4 kg/m². No significant (p>0.05) difference was found between the experimental and predicted values, thus ensuring the adequacy of the response surface models employed for describing the effects of hot-air drying on physicochemical properties of torch ginger and kaffir lime leaves. At the second stage, liquid-liquid solvent extraction was employed to extract flavour compounds of the samples which were analyzed using Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) with DB-5, BPX-5 as well as Quadrex007CW columns. The finding from GC and GC-MS revealed that fresh torch ginger contained 91 volatile compounds while optimally dried torch ginger contained 104 volatile compounds using Quadrex007CW column. However, only 54 volatile compounds of fresh torch ginger and 147 volatile compounds of optimally dried torch ginger were obtained using DB-5 column. The major aroma components in both fresh and optimally dried torch ginger were alcohol, ester, alkane, carboxylic acid, ketone and aldehyde. A total of 45 compounds were identified in fresh kaffir lime leaves as compared to 41 compounds in optimally dried kaffir lime leaves using BPX-5 column. However, a total of 66 compounds were determined in fresh kaffir lime leaves and 40 compounds in optimally dried kaffir lime leaves using DB-5 column. Monoterpenes and sesquiterpenes were found to be major components. Finally, the herbs inclusion/infusion parameters levels [size of herbs (2-100 mm), concentration of herbs (3-15 g/L) and temperature of inclusion (25-100 °C)] in different types of food systems (liquid and semi
solid) were determined. Sensory evaluations using 50 untrained panelists were utilized to assess colour, aroma, taste and overall acceptability of products. The results from sensory evaluation showed that vichyssoise soup flavoured with optimally dried *C. hystrix* leaves were more highly preferred by panelist compared to vichyssoise soup flavoured with optimally dried *E. elatior* while sorbet flavoured with optimally dried *C. hystrix* were highly preferred by panelist compared to sorbet flavoured with optimally dried *E. elatior*. This study has significantly contributed to the establishment of standardized measurements for the amount of herbs required for various kinds of foods. Potentially, this study also yields herbs that reaches international specification standard and enables worldwide export of Malaysian herbs.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN PENGERINGAN UDARA PANAS KE ATAS CIRI-CIRI FIZIKOKIMIA, PROFIL PERISA DAN PENERIMAAN SENSORI BAGI Citrus hysrix DAN Etlingera elatior Jack

Oleh

NURUL HANISAH JUHARI

Jun 2012

Pengerusi: Prof. Madya Lasekan Olusegun, PhD

Fakulti: Sains dan Teknologi Makanan

herba optimum (saiz, suhu dan kepekatan herba) ke atas penerimaan sensori sup Vichysoisse dan ‘sorbet’ juga telah ditentukan. Keputusan menunjukkan respon yang terbaik untuk bunga kantan, dalam julat yang dikaji, telah dicapai apabila masa pengeringan ialah 4.1 j, suhu pengeringan, 79 °C dan kapasiti pembebanan, 0.7 kg/m\(^2\). Sebaliknya, keadaan pengeringan optimum yang menyeluruh bagi daun limau purut, telah dicapai apabila masa pengeringan ialah 4.9 j, suhu pengeringan, 60 °C dan kapasiti pembebanan, 1.4 kg/m\(^2\). Tiada perbezaan yang signifikan (p>0.05) telah didapati antara nilai percubaan dan nilai ramalan, demikian menjamin kecukupan model permukaan gerak balas yang telah diguna untuk menggambarkan kesan pengeringan udara panas ke atas ciri-ciri fizikokimia bunga kantan dan daun limau purut. Pada peringkat kedua, pengekstrakan pelarut cecair-cecair digunakan untuk menganalisis sebatian perasa menggunakan Kromatografi Gas (GC) dan Kromatografi Gas-Spektrometri Jisim (GC-MS) dengan menggunakan lajur DB-5, BPX-5 dan Quadrex007CW. Penemuan dari GC and GC-MS mendedahkan bahawa bunga kantan segar mengandungi 91 sebatian mudah meruap berbanding bunga kantan yang dikeringkan secara optimum yang mengandungi 104 sebatian mudah meruap setelah menggunakan lajur Quadrex007CW. Walau bagaimanapun, terdapat hanya 54 sebatian mudah meruap bagi bunga kantan segar dan 147 sebatian mudah meruap bagi bunga kantan yang dikeringkan secara optimum setelah menggunakan lajur DB-5. Komponen-komponen aroma utama dalam kedua-dua bunga kantan segar dan juga bunga kantan yang dikeringkan secara optimum ialah alkohol, ester, alkana, asid karboksilik, keton dan aldehid. Sejumlah 45 sebatian telah dikenal pasti dalam daun limau purut yang segar berbanding 41 sebatian dalam daun limau purut yang dikeringkan secara optimum setelah menggunakan lajur BPX-5. Walau bagaimanapun, sejumlah 66 sebatian telah ditentukan untuk daun limau purut yang segar dan 40 sebatian untuk bunga kantan yang dikeringkan secara
optimum setelah menggunakan lajur DB-5. Monoterpena and sesquiterpena telah didapati sebagai komponen utama. Akhirnya, tahap-tahap kemasukan herba optimum [saiz herba (2-100 mm), kepekatan herba (3-15 g/L) dan suhu kemasukan (25-100 °C)] ke dalam sistem makanan yang berbeza (cecair dan separuh pepejal) telah ditentukan. Penilaian deria menggunakan 50 ahli panel tidak terlatih telah digunakan untuk menilai rupa, aroma, rasa dan kebolehterimaan menyeluruh produk. Hasil daripada penilaian sensori menunjukkan bahawa sup vichyssoise berperisa limau purut lebih diterima oleh ahli panel berbanding sup vichyssoise berperisa bunga kantan manakala sorbet berperisa limau purut juga lebih digemari oleh ahli panel berbanding sorbet berperisa bunga kantan. Kajian ini berupaya menyumbang secara signifikan kepada pembentukan piawaian ukuran jumlah untuk herba ke dalam pelbagai jenis makanan. Kajian ini juga berpotensi untuk menghasilkan herba yang telah dikering setanding spesifikasi antarabangsa dan membolehkan herba-herba Malaysia dieksport ke seluruh dunia.
ACKNOWLEDGEMENTS

Syukur Alhamdulillah to the Almighty Allah S.W.T for giving me strength, patience and capability to complete this project and thesis write up.

First and foremost, I would like to express my infinite thanks and sincere appreciation to my supervisor, Assoc. Prof. Dr. Lasekan Olusegun and my co-supervisors, Assoc. Prof. Dr. Sharifah Kharidah Syed Muhammad and Assoc. Prof. Dr. Muhammad Shahrim Ab Karim for their greatest guidance, useful suggestion, invaluable advice and encouragement in accomplishing this project.

Apart from that, I would like to thank all lectures and staff from Faculty of Food Science and Technology for their invaluable suggestions and constructive comments in my thesis project. Also, huge thanks go to Ministry of Higher Education (MOHE) Malaysia for awarded SLAB scholarship for me to pursue my Master of Science Degree in Food Science in Universiti Putra Malaysia.

Moreover, I would like to express my warmest appreciation to my beloved parents and family for their support and understanding of my difficulties to finish up my thesis.

Last but not least, I would like to express thousand thanks to my colleagues, who have been directly or indirectly helping me to complete this project successfully.
I certify that a Thesis Examination Committee has met on 11 June 2012 to conduct the final examination of Nurul Hanisah Juhari on her thesis entitled “Effect of Hot-air Drying on Physicochemical Characteristics, Flavour Profiles and Sensory Acceptances of *Citrus hystrix* and *Etlingera elatior* Jack” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Nor Ainy Mahyudin, PhD
Senior Lecturer
Faculty of Food Science and Technology
University Putra Malaysia
(Chairman)

Alfi Khatib, PhD
Associate Professor
Faculty of Food Science and Technology
University Putra Malaysia
(Internal Examiner)

Roselina Karim, PhD
Associate Professor
Faculty of Food Science and Technology
University Putra Malaysia
(Internal Examiner)

Nor Azah Mohamad Ali, PhD
Senior Research Officer
Medicinal Plants Division
Forest Research Institute Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2012
This thesis was submitted to the Senate of university Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Lasekan Olusegun, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Sharifah Kharidah Syed Muhammad, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Muhammad Shahrim Ab Karim, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2012
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURUL HANISAH JUHARI
Date: 11 June 2012
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>49</td>
</tr>
<tr>
<td>3.7</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>62</td>
</tr>
</tbody>
</table>
3.9 The matrix of central composite design (CCD) and experimental data obtained for the response variables studied (Y_{1-6}) (mean±SD) for dried $C. hystrix$ leaves

3.10 Regression summary and analysis of variance for moisture content, water activity, texture, colour-L, colour-a and colour-b in uncoded form of process variable for dried $C. hystrix$ leaves

3.11 ANOVA and regression coefficients of the first- and second-order polynomial models for dried $C. hystrix$ leaves

3.12 Experimental and predicted values for the response variables studied for dried $C. hystrix$ leaves

4.1 Characteristics of the calibration curves

4.2 Performance characteristics of the calibration curves

4.3 Volatile constituents of fresh $C. hystrix$ leaves using BPX-5 column

4.4 Volatile constituents of optimally dried $C. hystrix$ leaves using BPX-5 column

4.5 Volatile constituents of fresh $C. hystrix$ leaves using DB-5 column

4.6 Volatile constituents of optimally dried $C. hystrix$ leaves using DB-5 column

4.7 Volatile constituents of fresh $E. elatior$ using QUADREX-007CW column

4.8 Volatile constituents of optimally dried $E. elatior$ using QUADREX-007CW column

4.9 Volatile constituents of fresh $E. elatior$ using DB-5 column

4.10 Volatile constituents of optimally dried $E. elatior$ using DB-5 column

5.1 Ingredients of Vichyssoise Soup

5.2 Ingredients of Basic Sorbet

5.3 Levels of independent variables for vichyssoise soup established according to the central composite design (CCD) for optimally dried $E. elatior$
5.4 Levels of independent variables for vichyssoise soup established according to the central composite design (CCD) for optimally dried *C. hystrix* leaves

5.5 Levels of independent variables for sorbet established according to the central composite design (CCD) for optimally dried *E. elatior*

5.6 Levels of independent variables for sorbet established according to the central composite design (CCD) for optimally dried *C. hystrix* leaves

5.7 The matrix of central composite design (CCD) for vichyssoise soup flavoured with optimally dried *E. elatior*

5.8 The matrix of central composite design (CCD) for vichyssoise soup flavoured with optimally dried *C. hystrix* leaves

5.9 The matrix of central composite design (CCD) for sorbet flavoured with optimally dried *E. elatior*

5.10 The matrix of central composite design (CCD) for sorbet flavoured with optimally dried *C. hystrix* leaves.

5.11 The matrix of central composite design (CCD) and experimental data obtained for the response variables studied (Y_{1-4}) (mean±SD) for vichyssoise soup flavoured with optimally dried *E. elatior*.

5.12 Regression summary and analysis of variance for appearance, aroma, taste and overall acceptability in uncoded form of process variable for vichyssoise soup flavoured with optimally dried *E. elatior*.

5.13 ANOVA and regression coefficients of the first- and second-order polynomial models for vichyssoise soup flavoured with optimally dried *E. elatior*

5.14 Experimental and predicted values for the response variables studied for vichyssoise soup flavoured with optimally dried *E. elatior*

5.15 The matrix of central composite design (CCD) and experimental data obtained for the response variables studied (Y_{1-4}) (mean±SD) for vichyssoise soup flavoured with optimally dried *C. hystrix* leaves

5.16 Regression summary and analysis of variance for appearance, aroma, taste and overall acceptability in uncoded form of process...
variable for vichyssoise soup flavoured with optimally dried \textit{C. hystrix} leaves

5.17 ANOVA and regression coefficients of the first- and second-order polynomial models for vichyssoise soup flavoured with optimally dried \textit{C. hystrix} leaves

5.18 Experimental and predicted values for the response variables studied for vichyssoise soup flavoured with optimally dried \textit{C. hystrix} leaves

5.19 The matrix of central composite design (CCD) and experimental data obtained for the response variables studied (Y_{1-4}) (mean±SD) for sorbet flavoured with optimally dried \textit{E. elatior}

5.20 Regression summary and analysis of variance for appearance, aroma, taste and overall acceptability in uncoded form of process variable for sorbet flavoured with optimally dried \textit{E. elatior}

5.21 ANOVA and regression coefficients of the first- and second-order polynomial models for sorbet flavoured with optimally dried \textit{E. elatior}

5.22 Experimental and predicted values for the response variables studied for sorbet flavoured with optimally dried \textit{E. elatior}

5.23 The matrix of central composite design (CCD) and experimental data obtained for the response variables studied (Y_{1-4}) (mean±SD) for sorbet flavoured with optimally dried \textit{C. hystrix} leaves

5.24 Regression summary and analysis of variance for appearance, aroma, taste and overall acceptability in uncoded form of process variable for sorbet flavoured with optimally dried \textit{C. hystrix} leaves

5.25 ANOVA and regression coefficients of the first- and second-order polynomial models for sorbet flavoured with optimally dried \textit{C. hystrix} leaves

5.26 Experimental and predicted values for the response variables studied for sorbet flavoured with optimally dried \textit{C. hystrix} leaves
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Kaffir lime leaf (Citrus hystrix)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Torch ginger (Etlingera elatior)</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Response surface plot for effect of hot-air drying conditions (drying time, drying temperature and loading capacity) on the moisture content of E. elatior (a. drying time vs drying temperature, b. drying time vs loading capacity, c. drying temperature vs loading capacity)</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Response surface plot for effect of hot-air drying conditions (drying temperature and loading capacity) on the water activity of dried E. elatior</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Response surface plot for effect of hot-air drying conditions (drying temperature and loading capacity) on the texture of dried E. elatior</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Response surface plot for effect of hot-air drying conditions (drying temperature and loading capacity) on the colour-(L) of dried E. elatior</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Response surface plot for effect of hot-air drying (drying time, drying temperature and loading capacity) on the colour-(a) of E. elatior. (a. drying time vs drying temperature, b. drying time vs loading capacity, c. drying temperature vs loading capacity)</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Response surface plot for effect of hot-air drying conditions (drying time and drying temperature) on the moisture content of dried C. hystrix leaves</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Response surface plot for effect of hot-air drying conditions (drying time and drying temperature) on the water activity of dried C. hystrix leaves</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Response surface plot for effect of hot-air drying conditions (drying time and drying temperature) on the texture of dried C. hystrix leaves</td>
<td>71</td>
</tr>
<tr>
<td>3.9</td>
<td>Response surface plot for effect of hot-air drying conditions (drying time, drying temperature and loading capacity) on the colour-(L) of dried C. hystrix leaves (a. drying time vs drying temperature, b. drying time vs loading capacity, c. drying temperature vs loading capacity)</td>
<td>73</td>
</tr>
</tbody>
</table>
3.10 Response surface plot for effect of hot-air drying conditions (drying time, drying temperature and loading capacity) on the colour-\(a\) of dried \(C.\ hystrix\) leaves (a. drying time vs drying temperature, b. drying time vs loading capacity, c. drying temperature vs loading capacity)

3.11 Response surface plot for effect of hot-air drying conditions (drying time and loading capacity) on the colour-\(b\) of dried \(C.\ hystrix\) leaves

5.1 Response surface plot for effect of different herbs inclusion levels (size of herbs, concentration of herbs and temperature of inclusion) on appearance score of vichyssoise soup flavoured with optimally dried \(E.\ elatior\) (a. size of herbs vs concentration of herbs, b. size of herbs vs temperature of inclusion, c. concentration of herbs vs temperature of inclusion).

5.2 Response surface plot for effect of different herbs inclusion levels (size of herbs, concentration of herbs and temperature of inclusion) on taste score of vichyssoise soup flavoured with optimally dried \(E.\ elatior\) (a. size of herbs vs concentration of herbs, b. size of herbs vs temperature of inclusion, c. concentration of herbs vs temperature of inclusion)

5.3 Response surface plot for effect of different herbs inclusion levels (size of herbs, concentration of herbs and temperature of inclusion) on overall acceptability score of vichyssoise soup flavoured with optimally dried \(E.\ elatior\) (a. size of herbs vs concentration of herbs, b. size of herbs vs temperature of inclusion, c. concentration of herbs vs temperature of inclusion)

5.4 Response surface plot for effect of different herbs inclusion levels (size of herbs and temperature of inclusion) on appearance score of vichyssoise soup flavoured with optimally dried \(C.\ hystrix\) leaves

5.5 Response surface plot for effect of different herbs inclusion levels (size of herbs and concentration of herbs) on appearance of sorbet flavoured with optimally dried \(E.\ elatior\)

5.6 Response surface plot for effect of different herbs inclusion levels (size of herbs, concentration of herbs and temperature of infusion) on taste score of sorbet flavoured with optimally dried \(E.\ elatior\) (a. size of herbs vs concentration of herbs, b. size of herbs vs temperature of infusion, c. concentration of herbs vs temperature of infusion)
5.7 Response surface plot for effect of different herbs inclusion levels (concentration of herbs and temperature of infusion) on overall acceptability score of sorbet flavoured with optimally dried *E. elatior*

5.8 Response surface plot for effect of different herbs inclusion levels (size of herbs, concentration of herbs and temperature of infusion) on appearance score of sorbet flavoured with optimally dried *C. hystrix* leaves. (a. size of herbs vs concentration of herbs, b. size of herbs vs temperature of infusion, c. concentration of herbs vs temperature of infusion)

5.9 Response surface plot for effect of different herbs inclusion levels (size of herbs and temperature of infusion) on aroma score of sorbet flavoured with optimally dried *C. hystrix* leaves
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sensory Evaluation form for Vichyssoise Soup [Cream of Potato & Leek Soup flavoured with Torch ginger (Bunga Kantan)]</td>
<td>217</td>
</tr>
<tr>
<td>B</td>
<td>Sensory Evaluation form for Vichyssoise Soup [Cream of Potato & Leek Soup flavoured with Kaffir lime leaves (Daun limau purut)]</td>
<td>221</td>
</tr>
<tr>
<td>C</td>
<td>Sensory Evaluation form for Sorbet flavoured with Torch ginger (Bunga Kantan)</td>
<td>225</td>
</tr>
<tr>
<td>D</td>
<td>Sensory Evaluation form for Sorbet flavoured with Kaffir lime leaves (Daun limau purut)</td>
<td>229</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>AIA</td>
<td>Acid Insoluble Ash</td>
<td></td>
</tr>
<tr>
<td>amu</td>
<td>Atomic mass unit</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Analytical Chemists</td>
<td></td>
</tr>
<tr>
<td>ASTA</td>
<td>American Spice Trade Association</td>
<td></td>
</tr>
<tr>
<td>A<sub>w</sub></td>
<td>Water activity</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
<td></td>
</tr>
<tr>
<td>eV</td>
<td>Electronvolt</td>
<td></td>
</tr>
<tr>
<td>ESA</td>
<td>European Standard Association</td>
<td></td>
</tr>
<tr>
<td>Eq.</td>
<td>Equation</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>Gac chromatography</td>
<td></td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography – Mass Spectrometry</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
<td></td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
<td></td>
</tr>
<tr>
<td>ICMSF</td>
<td>International Commission on Microbiological Specifications for Foods</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Loss on drying</td>
<td></td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
<td></td>
</tr>
<tr>
<td>LOL</td>
<td>on-line linearity</td>
<td></td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
<td></td>
</tr>
<tr>
<td>m²</td>
<td>Meter square</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
<td></td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>Micro liter</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Mass – Spectrometry</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>morality</td>
<td></td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of determination</td>
<td></td>
</tr>
<tr>
<td>RSD</td>
<td>Relative standard deviation</td>
<td></td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
<td></td>
</tr>
<tr>
<td>SDE</td>
<td>Simultaneous Distillation - Extraction</td>
<td></td>
</tr>
<tr>
<td>V/O</td>
<td>Volatile oil</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
<td></td>
</tr>
<tr>
<td>wt</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>w/w</td>
<td>Weight per weight</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 2.1 Herbs and Spices
 2.1.1 Definition of Spices
 2.1.2 Basic Uses for Spices
 2.1.3 Spices Qualities and Specification
 2.1.4 The Effect of Cooking on Spice Flavours and Functions
 2.1.5 Adding Herbs and Spices to Food
 2.1.6 Forms of Spices
 2.1.7 Storage and Shelf life of Herbs and Spices
 2.2 Spices, Flavourings and Seasonings of Popular Authentic Ethnic
 2.3 Kaffir lime leaves (*Citrus hystrix*)
 2.4 Torch ginger (*Etlingera elatior*)
 2.5 Flavour Profiles of *C. hystrix* and *E. elatior*
 2.5.1 Chemical Compounds Responsible for Flavour
 2.6 Drying of Herbs and Spices
 2.6.1 Methods of Drying
 2.6.2 The Effects of Drying on Aromatic Spices
 2.7 Application of Herbs into Food System
 2.8 Cooking Methods
 2.9 The Art of Flavouring
 2.9.1 Basic Rules of Flavouring | 1
 | 5
 | 5
 | 6
 | 7
 | 9
 | 10
 | 10
 | 10
 | 12
 | 13
 | 15
 | 17
 | 20
 | 20
 | 21
 | 21
 | 29
 | 30
 | 30
 | 31
 | 32 |
3 OPTIMIZATION OF HOT-AIR DRYING CONDITIONS ON THE PHYSICOCHEMICAL CHARACTERISTICS OF Citrus hystrix AND Etlingera elatior

3.1 Introduction
3.2 Materials and Methods
3.2.1 Sample Preparation
3.2.2 Drying Equipment
3.2.3 Drying Procedure
3.2.4 Physicochemical Analysis
3.2.4.1 Determination of moisture content
3.2.4.2 Determination of water activity
3.2.4.3 Determination of texture (brittleness)
3.2.4.4 Determination of colour (L, a, b)
3.2.5 Experimental Design and Data Analysis
3.2.6 Statistical Analysis
3.2.7 Optimization Procedure
3.2.8 Verification of Models

3.3 Results and Discussion
3.3.1 Torch ginger (Etlingera elatior Jack)
 3.3.1.1 Fitting the response surface models
 3.3.1.2 Moisture content
 3.3.1.3 Water activity
 3.3.1.4 Texture (brittleness)
 3.3.1.5 Colour-L
 3.3.1.6 Colour-a
 3.3.1.7 Optimization and validation procedures

3.3.2 Kaffir lime leaves (Citrus hystrix)
 3.3.2.1 Fitting the response surface models
 3.3.2.2 Moisture content
 3.3.2.3 Water activity
 3.3.2.4 Texture (brittleness)
 3.3.2.5 Colour-L
 3.3.2.6 Colour-a
 3.3.2.7 Colour-b
 3.3.2.8 Optimization and validation procedures

3.4 Conclusion
4 EFFECT OF HOT-AIR DRYING CONDITIONS ON THE FLAVOUR VOLATILES OF _Citrus hystrix_ AND _Etlingera elatior_

4.1 Introduction 80

4.2 Materials and Methods 82
 4.2.1 Sample Preparation 82
 4.2.2 Drying Equipment and Drying Procedures 83
 4.2.3 Chemicals Standards and Reagents 83
 4.2.4 Extraction and Concentration of Volatiles Compounds 84
 4.2.5 Chromatographic Analysis of the Volatiles Compounds 85
 4.2.5.1 Gas Chromatography 85
 4.2.5.2 Gas Chromatography – Mass Spectrometry 86
 4.2.6 Identification of the Essential Oils Compounds 88
 4.2.7 Quantification 88

4.3 Results and Discussion 89
 4.3.1 Performance Characteristic 89
 4.3.1.1 Calibration and Linearity 89
 4.3.1.2 Detection and Quantification Limits, Recovery and Analytical Sensitivity 89
 4.3.2 Determination of Flavour Volatiles Compounds in Fresh and Optimally Dried _Citrus hystrix_ leaves 91
 4.3.3 Determination of Flavour Volatiles Compounds in Fresh and Optimally Dried _Etlingera elatior_ Jack 106

4.4 Conclusion 129

5 OPTIMIZATION THE HERBS INCLUSION/INFUSION PARAMETERS LEVELS OF _Citrus hystrix_ AND _Etlingera elatior_ ON SENSORY ACCEPTANCE OF VICHYSSOISE SOUP AND SORBET

5.1 Introduction 130

5.2 Materials and Methods 131
 5.2.1 Sample Preparation 131
 5.2.2 Basic Vichyssoise Soup Formulation 132
 5.2.2.1 Preparation of Vichyssoise Soup 132
 5.2.3 Basic Sorbet Formulation 133
 5.2.3.1 Preparation of Sorbet 133
 5.2.4 Sensory evaluation 134
 5.2.5 Experimental Design and Data Analysis 134
 5.2.6 Statistical Analysis 140
 5.2.7 Optimization Procedure 140
 5.2.8 Verification of Models 140

5.3 Results and Discussion 140
5.3.1 Vicyssioisse Soup [Cream of Potato & Leek Soup flavoured with Optimally Dried *Etlingera elatior* Jack

5.3.1.1 Fitting the response surface models 140
5.3.1.2 Appearance 146
5.3.1.3 Aroma 148
5.3.1.4 Taste 150
5.3.1.5 Overall acceptability 152
5.3.1.6 Optimization and validation procedures 154

5.3.2 Vicyssioisse Soup [Cream of Potato & Leek Soup flavoured with optimally dried *Citrus hystrix* leaves

5.3.2.1 Fitting the response surface models 156
5.3.2.2 Appearance 161
5.3.2.3 Aroma 163
5.3.2.4 Taste 164
5.3.2.5 Overall acceptability 165
5.3.2.6 Optimization and validation procedures 167

5.3.3 Sorbet flavoured with Optimally Dried *Etlingera elatior* Jack

5.3.3.1 Fitting the response surface models 169
5.3.3.2 Appearance 174
5.3.3.3 Aroma 176
5.3.3.4 Taste 178
5.3.3.5 Overall acceptability 180
5.3.3.6 Optimization and validation procedures 182

5.3.4 Sorbet flavoured with Optimally Dried *Citrus hystrix* leaves

5.3.4.1 Fitting the response surface models 184
5.3.4.2 Appearance 189
5.3.4.3 Aroma 191
5.3.4.4 Taste 193
5.3.4.5 Overall acceptability 194
5.3.4.6 Optimization and validation procedures 196

5.4 Conclusion 198

6 GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES 203
APPENDICES 217
BIODATA OF STUDENT 233
LIST OF PUBLICATIONS 234