

UNIVERSITI PUTRA MALAYSIA

BIOLOGY AND CAST PROPERTIES OF SOIL-DWELLING EARTHWORM OF KAKI BUKIT, PERLIS, MALAYSIA

TENG SUK KUAN

BIOLOGY AND CAST PROPERTIES OF SOIL-DWELLING EARTHWORM OF KAKI BUKIT, PERLIS, MALAYSIA

By
TENG SUK KUAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the Degree of Master of Science

January 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

BIOLOGY AND CAST PROPERTIES OF SOIL-DWELLING EARTHWORM OF KAKI BUKIT, PERLIS, MALAYSIA

 $\mathbf{B}\mathbf{y}$

TENG SUK KUAN

January 2012

Chairman: Nor Azwady Abd Aziz, PhD

Faculty: Science

Soil dwelling earthworms have close association with soil and plant root systems.

They promote organic matter decomposition and nutrient cycling in soils. Present study was carried out to examine the physico-chemical parameters which may

influence the diversity, density and biomass of earthworm community in Kaki Bukit, Perlis. The area is mainly planted with rubber and fruit trees and is surrounded by

limestone hills, thus serves as an unique agroecosystem to be explored. Earthworms

and soil samples were collected for identification and analyses in the laboratory. Both

morphology and molecular techniques were adopted to identify earthworms up to

species level. In molecular identification, the primers used are from COI (cytochrome

c oxidase I) and 16S rRNA genes. The area was found to be dominated by Metaphire

tschiliensis tschiliensis, a relatively large-sized soil dwelling earthworm that showed

active surface casting activity. Its density has positive correlation with soil pH $\left(r=\right)$

0.645), clay content (r = 0.801), total N (r = 0.596) and total Ca (r = 0.415) whilst

ii

negatively correlated with Fe. In addition, earthworm biomass was found to be positively correlated with K concentration (r = 0.374). Present study demonstrated that surface casts produced by *M. tschiliensis tschiliensis* contained higher total carbon, humic acid, N, Ca, S and Zn contents compared to worm worked soil and bulk soil. Earthworm casts also have higher microbial (bacteria and fungi) populations than worm worked soil and bulk soil which in turns led to higher nutrient contents in earthworm casts. The study highlighted the beneficial effects of *M. tschiliensis tschiliensis* onto soil and to be potentially serves as soil bioconditioner in tropical agroecosystem.

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Mastar Sains

BIOLOGI DAN ANALISA TINJA CACING TANAH DARI KAKI BUKIT, PERLIS, MALAYSIA

Oleh

TENG SUK KUAN

Januari 2012

Pengerusi: Nor Azwady Abd Aziz, PhD

Fakulti: Sains

Cacing tanah merupakan komuniti yang mempunyai hubungan rapat dengan tanah

dan akar tumbuhan. Cacing tanah mempercepatkan proses pereputan organik dan

menyumbang dalam kitaran nutrien tanah. Penyelidikan ini dijalankan untuk mengkaji

ciri fisiko-kimia tanah yang mempengaruhi taburan dan biomas komuniti cacing tanah

di Kaki Bukit, Perlis. Kawasan tersebut ditanam dengan pokok getah dan buah-

buahan dan diselubungi oleh kawasan bukit batu kapur. Justeru itu ia menjadi suatu

ekosistem unik yang berpotensi untuk dikaji. Kaedah morfologi and molekul

digunakan dalam proses identifikasi specimen cacing tanah. Bagi kaedah molekul,

primer yang digunakan adalah dari COI (cytochrome c oxidase I) dan 16S rRNA.

Kawasan kajian tersebut didominasi oleh cacing tanah, Metaphire tschiliensis

tschiliensis yang mendeposit tinja secara aktif di permukaan tanah. Taburan cacing ini

mempunyai korelasi positif dengan pH (r = 0.645), tanah liat (r = 0.801) dan Ca (r = 0.801)

iv

0.415) selain mempunyai korelasi negatif dengan Fe. Di samping itu, biomas cacing mempunyai korelasi positif dengan K (r = 0.374). Kajian ini menunjukkan tinja cacing mempunyai jumlah karbon, jisim organik, asid humik, kandungan N, Ca, S dan Zn serta populasi mikrob (bakteria dan fungi) yang lebih tinggi berbanding dengan tanah yang didiami oleh cacing tanah dan tanah tanpa cacing. Kajian ini merumus kesan baik kehadiran *M. tschiliensis tschiliensis* dalam tanah dan ia berpotensi untuk dijadikan agen biopemulihan tanah dalam ekosistem pertanian tropika.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to Dr. Nor Azwady Abd Aziz, my supervisor. He had provided a lot of guidance and assistance throughout my research and thesis writing. He has kept the research on track and checked my progress from time to time. Besides that, credits must also go to my co supervisors, Assoc. Prof. Dr. Muskhazli Mustafa and Prof. Dr. Suraini Abd Aziz who had provided constructive idea and projections in the research. Thank you for the time and experiences shared.

Supports were received by numerous people throughout the research. Field works and laboratory experiments were made pleasurable with the kind supports of laboratory assistants of Biology Department, Science Faculty, UPM. Special thanks to my friends, Yan Yi Wei, Sujithra Devi A/P Awinagiri Theva, Noraziha binti Anang and Hoh Chum Sim for their companion and help in the field and also in the laboratory. I would also like to thank Prof. Dr. Zulkifli Hj. Shamsuddin for his generosity in providing chemicals and laboratory accession.

Special thanks to UPM and Ministry of Higher Education (MOHE) for providing sponsorships through Graduate Research Fellowship (GRF) and Mini Bajet 2009 throughout the research. Last but not least, thanks my beloved family members and fiancé, Victor Lee who shows unconditional care and support to me all the time. May God bless all of you.

I certify that an Examination Committee has met on 13 January 2012 to conduct the final examination of Teng Suk Kuan on her degree thesis entitle "Biology and cast properties of soil-dwelling earthworm of Kaki Bukit, Perlis, Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master of Science.

Members of Examination Committee were as follows:

Name of Chairperson, PhD

Assoc. Prof. Dr. Rusea Go Biology Department Science Faculty Universiti Putra Malaysia

Name of Examiner 1, PhD

Dr. Hishamuddin bin Omar Biology Department Science Faculty Universiti Putra Malaysia

Name of Examiner 2, PhD

Prof. Dr. Ahmad bin Ismail Biology Department Science Faculty Universiti Putra Malaysia

Name of External Examiner, PhD

Assoc. Prof. Dr. Hasnah Jais School of Biological Sciences Universiti Sains Malaysia 11800 Minden Pulau Pinang

> SEOW HENG FONG, PhD Professor and Deputy Dean School of graduate Studies Universiti Putra Malaysia

Date: 23 April 2012

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Azwady Abd Aziz, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Muskhazli Mustafa, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Suraini Abd Aziz, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TENG SUK KUAN

Date: 13th January 2012

TABLE OF CONTENTS

		Page
ABSTRACT	Γ	ii
ABSTRAK		iv
ACKNOWI	LEDGEMENTS	vi
APPROVAL	L	vii
DECLARA	TION	ix
LIST OF TA	ABLES	X
LIST OF FI	GURES	xi
LIST OF A	BBREVIATIONS	xiii
CHAPTER		
1	INTRODUCTION	1
2	LITERATURE REVIEW	5
	2.1 Earthworms and soil system	5
	2.2 Earthworm ecology	7
	2.3 Earthworm taxonomic studies	10
	2.3.1 Earthworm morphological characteristics	11
	2.3.2 New approach in earthworm identification	20
	2.4 Earthworm community in the tropics	23
	2.4.1 Earthworm diversity study in Malaysia	25
	2.4.2 Factors that influence earthworm diversity	27
	2.5 Earthworm casts	33
	2.5.1 Cast structure	34
	2.5.2 Casting behavior	36
	2.5.3 Nutrient improvement in earthworm casts	38
	2.5.4 Microbial populations in earthworm casts	39
3	GENERAL MATERIALS AND METHODS	41
	3.1 Field sampling	41
	3.2 Soil and cast analysis	44
	·	
4	IDENTIFICATION ON EARTHWORMS IN	48
	AGROECOSYSTEM OF KAKI BUKIT, PERLIS	3
	4.1 Introduction	48
	4.2 Materials and methods	49
	4.2.1 Earthworm preservation	49
	4.2.2 Morphological identification	50
	4.2.3 Molecular identification	50

	4.3 Results	56
	4.3.1 Morphological identifications	56
	4.3.2 Molecular identifications	59
	4.4 Discussions	62
5	SOIL PHYSICO-CHEMICAL PARAMETERS THAT AFFECT DIVERSITY, DENSITY AND BIOMASS OF EARTHWORM COMMUNITY IN KAKI BUKIT,	67
	PERLIS	
	5.1 Introduction	67
	5.2 Materials and methods	69
	5.2.1 Soil analysis	69
	5.2.2 Statistical analysis	74
	5.3 Results	74
	5.3.1 Earthworm density and biomass	74
	5.3.2 Soil physico-chemical parameters of study sites	75
	5.3.3 Correlations	75
	5.4 Discussions	76
6	STUDY ON PHYSICAL, CHEMICAL AND BIOLOGICAL PROPERTIES OF SURFACE CASTS PRODUCED BY M. tschiliensis tschiliensis	84
	6.1 Introduction	84
	6.2 Materials and methods	86
	6.2.1 Soil preparation	86
	6.2.2 Earthworms culturing	87
	6.2.3 Colony Forming Unit (CFU) determination	88
	6.2.4 Casts and soil analysis	91
	6.2.5 Statistical analyses	95
	6.3 Results	96
	6.3.1 Physical and chemical properties	96
	6.3.2 Macro and micronutrient contents	97
	6.3.3 Microbial populations	98
	6.4 Discussions	99
7	CONCLUDING REMARKS AND FUTURE RECOMMENDATIONS	108
REFEREN	REFERENCES	
APPENDICES		125
BIODATA OF STUDENT		129
LIST OF PUBLICATIONS		130