UNIVERSITI PUTRA MALAYSIA

ELECTROMAGNETIC CHARACTERISTIC OF OPEN ENDED COAXIAL AND OPTICAL FIBRE TECHNIQUES FOR MOISTURE CONTENT MEASUREMENT IN MAIZE

MOHAMAD ASHRY BIN JUSOH

FS 2012 3
ELECTROMAGNETIC CHARACTERISTIC OF OPEN ENDED COAXIAL
AND OPTICAL FIBRE TECHNIQUES FOR MOISTURE CONTENT
MEASUREMENT IN MAIZE

By

MOHAMAD ASHRY BIN JUSOH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2012
Specially dedicated to:
My Lovely Mother,
Brothers,
Sisters
and
In memorial: Father
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ELECTROMAGNETIC CHARACTERISTIC OF OPEN ENDED COAXIAL AND OPTICAL FIBRE TECHNIQUES FOR MOISTURE CONTENT MEASUREMENT IN MAIZE

By

MOHAMAD ASHRY BIN JUSOH

January 2012

Chairman : Zulkifly Abbas, PhD
Faculty : Science

This thesis describes an electromagnetic characteristic of open ended coaxial and optical fibre techniques for moisture content measurement in maize kernel based on reflectivity measurements. Both analytical and numerical methods were employed to calculate the reflectivity of the sensors. The former utilized the admittance model whilst the latter was implemented using Finite Element Method (FEM). The admittance model is an analytical equation based on integral equation for electric field at aperture. Computation of reflectivity using FEM is based on the solutions of a set of partial differential electric field equations. The FEM modelling was implemented using COMSOL Multiphysics version 3.5 software. Permittivity values required as inputs to admittance and FEM that were obtained from dielectric mixture model.
The measurement setups for open ended coaxial technique consist of Agilent Professional Network Analyzer (PNA-L N5230A) in microwave frequency range between 1 GHz and 5 GHz. The calibration was performed using a full one-port calibration technique. The optical fibre technique reflectivity measurement was realized using Ocean Optic Spectrometer (USB4000) with an operating wavelength between 230 nm and 800 nm.

In this work, the open ended coaxial technique involves both magnitude and phase whilst the optical fibre only provides the reflectivity value (magnitude only). The FEM results showed better agreement with measured data than the admittance model for both sensors. The effect of mesh was studied thoroughly and was found that the maximum relative errors for FEM with 4454 number of elements were 0.0093 and 0.0861 for magnitude and phase respectively.

Calibration equations have been established to determine moisture content in maize based on reflectivity measurements using both open ended and optical fibre sensors. The actual moisture content was found from standard oven drying method. The mean percentage errors of the calibration equations were found to be less than 4.32 % and 4.02 % for magnitude and phase of reflection coefficient respectively. While for optical fibre sensor, it was found that the mean percentage error are 12.23 % and 9.16 % for 300 nm and 800 nm respectively.

The empirical models have been developed to predict permittivity of maize based on measured reflection coefficient of sensors. The mean percentage errors were found to be less than 10 % when compared to commercial values. Enhanced accuracy of
prediction of permittivity was obtained by introducing an objective function to determine unknown parameters of the mixture model.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI ELEKTROMAGNET PADA TEKNIK SEPAKSI HUJUNG TERBUKA DAN SERABUT OPTIK UNTUK PENGUKURAN KANDUNGAN KELENGASAN DALAM JAGUNG

Oleh

MOHAMAD ASHRY BIN JUSOH

Januari 2012

Pengerusi : Zulkifly Abbas, PhD

Fakulti : Sains

Persediaan pengukuran untuk teknik sepaksi hujung terbuka terdiri daripada Agilent Professional Network Analyzer (PNA-L N5230A) dalam julat frekuensi gelombang mikro antara 1 GHz dan 5 GHz. Penentukuran dilakukan dengan menggunakan teknik tentukuran penuh satu-pangkal. Teknik pengukuran pantulan gentian optik diwujudkan dengan menggunakan Spektrometer Ocean Optic (USB4000) dengan panjang gelombang operasi antara 230 nm dan 800 nm.

Dalam kajian ini, teknik sepaksi hujung terbuka melibatkan kedua-dua magnitud dan fasa sedangkan gentian optik hanya menyediakan nilai pantulan (magnitud saja). Keputusan FEM dengan data yang diukur menunjukkan persetujuan yang lebih baik dari model masukan untuk kedua-dua penderia. Kesedang jejaring dipelajari secara menyeluruh dan didapati bahawa ralat relatif maksimum untuk FEM dengan 4454 jumlah elemen adalah masing-masing 0.0093 dan 0.0861 untuk magnitude dan fasa.

Persamaan tentukuran telah dibentuk untuk menentukan kelengasan dalam jagung berdasarkan pengukuran pantulan menggunakan kedua-dua penderia hujung terbuka dan gentian optik. Kelengasan yang sebenarnya diperolehi daripada kaedah piawai pengeringan ketuhar. Min peratusan ralat untuk persamaan tentukuran didapati masing-masing kurang dari 4.32 % dan 4.02 % untuk magnitude dan fasa pekali pantulan. Sedangkan untuk penderia gentian optik, didapati bahawa min peratusan ralat adalah masing-masing 12.23 % dan 9.16 % untuk 300 nm dan 800 nm.

Model empirik telah dibangunkan untuk meramalkan ketelusan jagung yang diukur berdasarkan pekali pantulan oleh penderia. Min peratusan ralat didapati kurang dari 10% bila dibandingkan dengan nilai komersial. Peningkatan ketepatan ramalan
ketelusan diperolehi dengan memperkenalkan fungsi objektif untuk menentukan parameter yang tidak diketahui dari model campuran.
ACKNOWLEDGEMENTS

The author wishes to thank his family members for their love, support and encouragement as well as for always being there for him.

The author extends his deepest gratitude to the chairman of supervisory committee, Assoc. Prof. Dr Zulkifly Abbas for his kindness, guidance, suggestion and his willingness to help.

The author also wishes to thank the member of the supervisory committee, Prof. Dr Azmi Zakaria and Assoc. Prof. Dr Jumiah Hassan for their advice, supervision and guidance.

Appreciation also given to my colleagues Dr Cheng Ee Meng, Dr Lee Kim Yee, Ahmad Fahad, Amizadillah, Zakiah, Fariza, Ali Hamad, Rahimah, Alif, Amiruddin, Najmi, Faiz, Fahmi and all members in the RF & Microwave Lab, past and present, for their guidance, help and support.
I certify that a Thesis Examination Committee has met on 9th January 2012 to conduct the final examination of Mohamad Ashry Bin Jusoh on his thesis entitled “Electromagnetic Characteristic of Open Ended Coaxial and Optical Fibre Techniques for Moisture Content Measurement in Maize” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P. U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the thesis Examination Committee were as follows:

Wan Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zaidan Abdul Wahab, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Josaphat Tetuko Sri Sumantyo, PhD
Professor
Center for Environmental Remote Sensing
Chiba University
Japan
(External Examiner)

__

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zulkifly Abbas, PhD
Assoc. Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Azmi Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Jumiah Hassan, PhD
Assoc. Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

__
BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMAD ASHRY BIN JUSOH

Date: 9th January 2012
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xvii
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxxii

CHAPTER

1. INTRODUCTION
1.1 An Overview of Microwave and Optical Non-Destructive Technique 1
1.2 An Overview of Maize 4
1.3 Problem Statement 6
1.4 Conventional Techniques to Determine Quality of Maize 8
1.5 Microwave and Optical Technique 9
1.6 Objectives 10
1.7 Thesis Outline 11

2. LITERATURE REVIEW
2.1 Maxwell’s Equations 14
2.2 Wave Equation 15
2.3 Analytical Methods 17
2.4 Numerical Methods 24
2.5 Finite Element Method 25
2.5.1 Historical Background of Finite Element 25
2.5.2 Definition of Finite Element Method 27
2.5.3 Step Included in Finite Element Method 30
2.5.4 Source of Error in Finite Element Method 31
2.5.5 Advantage of Finite Element Method 33
2.5.6 Disadvantage of Finite Element Method 34
2.6 Moisture Content Measurement Techniques 35
2.6.1 Basic Reference Technique 36
2.6.2 Practical Reference Technique 37
2.6.3 Rapid Technique 37
2.6.3.1 Microwave Moisture Measurement 39
2.6.3.2 Optical Moisture Measurement 41

2.7 Microwave Measurement Technique 43

xiii
2.7.1 Closed Waveguide or Coaxial Line Technique 43
2.7.2 Free Space Technique 45
 2.7.2.1 Open-Ended Transmission Technique 45
 2.7.2.2 Open Resonator Technique 46
 2.7.2.3 Far-Field and Near-Field Technique 47
 2.7.2.4 Dielectric Waveguide Technique 51
2.8 Optical Measurement Technique 53
 2.8.1 Transmission Technique 53
 2.8.2 Reflection Technique 54
2.9 Moisture Effect at Microwave Frequencies 55

3. THEORY
3.1 Analytical Admittance equation 57
3.2 Dielectric Mixture Model 62
 3.2.1 Introduction 62
 3.2.2 Calculated Permittivity from Dielectric Mixture Model 65
3.3 Finite Element Method Using COMSOL Program 70
 3.3.1 Discretization of the Domain 71
 3.3.2 Formulation of the System of Equations 72
 3.3.3 Solution of the System of Equations 72
3.4 Implementation of Wave Equation by COMSOL software 73
3.5 FEM Results and Analysis 76

4. METHODOLOGY
4.1 Sample Preparation 98
4.2 Measurement Setup 98
 4.2.1 Microwave Measurement Setup 98
 4.2.1.1 Open Ended Coaxial Sensor 100
 4.2.1.2 Vector Network Analyzer 102
 4.2.1.3 Calibration Procedure 104
 4.2.1.4 Accuracy of PNA-L5230A 105
 4.2.2 Optical Measurement Setup 110
 4.2.2.1 Reflection Probe R400-7-UV-VIS design 111
 4.2.2.2 Spectrometer 113
 4.2.2.3 Deuterium Tungsten Halogen Light Source 114
4.3 Step by step for FEM modeling using COMSOL Graphical User Interface (GUI) 116

5. RESULTS AND DISCUSSION
5.1 Open Ended Coaxial Technique 130
 5.1.1 Variation in Reflection Coefficient With Frequency for Different Moisture Content 130
 5.1.2 Development of empirical formula for determination of moisture content at 1 GHz to 5 GHz 138
 5.1.3 Variation in Complex Permittivity, ε_r with Frequency for different Moisture Content, MC of maize 148
 5.1.4 Empirical Modelling of Complex Permittivity of
Maize for Known MC and Frequency 151
5.1.5 Performance Characteristics 170
 5.1.5.1 Accuracy 170
 5.1.5.2 Linearity 171
 5.1.5.3 Sensitivity 174
 5.1.5.4 Probability Density Function (PDF) 176
 5.1.5.5 Tolerance 178
5.1.6 Finite Element Method Results 180
 5.1.6.1 Effect of Mesh in 2-Dimension 180
 5.1.6.2 Effect of Mesh in 3-Dimension 186
 5.1.6.3 Effect of Perfect Match Mayer (PML) 193
5.1.7 Optimization Method to improve mixture model 197
5.2 Optical Fibre Technique 201
 5.2.1 Variation in Reflectivity With Wavelength for Different Moisture Content 201
 5.2.2 Establishing Calibration Equation to Determine Moisture Content Based on Measured Reflectivity 206
 5.2.3 Performance Characteristics 211
 5.2.3.1 Accuracy 211
 5.2.3.2 Probability Density Function (PDF) 212
 5.2.3.3 Tolerance 214
 5.2.4 Finite Element Method Results 217
5.3 Summary 225

6. SUMMARY AND FUTURE WORK 228
 6.1 Summary of the Study 228
 6.2 Main Contributions 231
 6.3 Suggestion for Further Work 231

REFERENCES 233
LIST OF PUBLICATIONS 240
LIST OF APPENDICES 241
 A Refractive index of water 242
 B Relative error for dielectric constant and loss factor before and after optimization 244
 C FEM Simulation Results 247
 D Integration solution using Gauss-Legendre Quadrature method 257
 E Matlab Program for Calculation of Admittance Equation Using Gauss-Legendre Quadrature Integration 258

BIODATA OF STUDENT 260