UNIVERSITI PUTRA MALAYSIA

MEDICINAL HERBS AS GROWTH AND HEALTH PROMOTERS IN AFRICAN CATFISH (*Clarias gariepinus*, Burchell)

ATEFEH SHEIKHLAR

FP 2012 10
MEDICINAL HERBS AS GROWTH AND HEALTH PROMOTERS IN AFRICAN CATFISH (*Clarias gariepinus*, Burchell)

By

ATEFEH SHEIKHLAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Doctor of Philosophy

MEDICINAL HERBS AS GROWTH AND HEALTH PROMOTERS IN AFRICAN
CATFISH (Clarias gariepinus, Burchell)

By

ATEFEH SHEIKHLAR

August 2012

Chairman: Professor Abdul Razak Alimon, PhD
Faculty: Agriculture

In order to investigate the antimicrobial activity of aqueous and methanolic extracts of
four plants, *Euphorbia hirta* (asthma herb), *Trigonella foenum-graecum* seed
(fenugreek), *Citrus limon* peel (lemon) and *Morus alba* foliage (mulberry) on growth
performance and prevention of *Aeromonas hydrophila* in African catfish (*Clarias
gariepinus*), five experiments were carried out. In the first experiment, the effect of
aqueous and methanolic extracts of aforementioned plants were investigated against two
Gram-negative bacteria, *Aeromonas hydrophila* and *Escherichia coli* and two Gram-
positive bacteria, *Streptococcus agalactiae*, and *Staphylococcus aureus* and
the phytochemical compounds of the tested herbal extracts were determined. The 2nd study
was designed to evaluate the effects of dietary incorporating of these extracts (at different
levels) in African catfish (*Clarias gariepinus*). In this regard, assessing the effect of EHE
and MFE supplemented diets on the growth, hematology and histology (kidney and liver)
was conducted. The effect of inclusion of EHE in the diet on growth and disease prevention in the catfish was evaluated in the 3rd study. In the 4th study, The effect of inclusion of EHE in the diet on growth and disease prevention in the catfish was investigated. In the 5th study, the effects of dietary mixed-herbal (E. hirta and Morus alba) methanolic extracts (E-ME) on growth, nutrient digestibility, hematological and intestinal indices, antioxidant activity and disease prevention in the catfish were investigated. In the first experiment, the aqueous and methanolic extracts were obtained using distilled water and methanol. To examine antimicrobial characteristics of each extracts against tested bacteria the paper disc diffusion method was used. The experiments were conducted at an Aquatic Animal Health Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia. Fingerling African catfish (Clarias gariepinus) used in this study, were obtained from a local farm. The fish were weighed and kept in 100-l aquaria with 30 fish per aquarium. The initial weight per fish was around 9.5. Each treatment had three replicates and fish were fed over a period of 60 days (feeding experiment) and 30 days (challenge test). Growth performance, hematological parameters, meat antioxidant activity and cumulative mortality were determined in these studies. The results of first study indicated that based on the inhibition zone, the aqueous extracts of Trigonella foenum-graecum seed (TS) and Citrus limon peel (CP) revealed weak antibacterial activity against the bacteria. However, E. hirta (EH) and M. alba foliage (MF) aqueous extract at a concentration of 100 mg/ml showed moderate and weak activities respectively. The methanolic extracts of all herbs exhibited stronger antimicrobial activities against the tested pathogens as compared to the water extracts. Among the entire methanolic extracts, the EH and MF had the strongest activities,
while the others exhibited moderate or weak activities. Moreover, the results indicated that *A. hydrophila* was the most sensitive microorganism tested, with the highest inhibition zone in the presence of the methanolic extracts obtained from EH and MF. The phytochemical screening of the methanol extract of *E. hirta* (EHE) and methanol extract of *M. alba* foliage (MFE) showed the presence of secondary metabolites such as phenols, volatile oils, tannins, saponins, steroids, flavonoid, terpenoids and alkaloids. Results of 2nd revealed no negative effects of EHE and MFE (at 7 g/Kg DM of diet) in the experimental diets on the fish, while by increasing the level of EHE and MFE to 9 g/Kg, it showed some negative changes in the growth, hematological characteristics and histological assessment.

Results of 3rd study showed that growth performance was positively affected by dietary supplements. Mortality rate decreased in fish fed EHE-5 and EHE-7 (5 and 7 g/Kg of DM) supplemented diets. Red blood cells, albumin and total protein increased in fish fed with EHE-7 diet compared to other groups. The meat from fish fed with the EHE supplemented diet (EHE-7) was higher for total phenols content and the free radical-scavenging effect (DPPH) than the other dietary groups. Dietary EHE did not change the lipid oxidation (TBARS) of meat. It was shown that storage time had significant effect on meat antioxidative potential. The results of hematological profile after artificial infection with *A. hydrophila* revealed that RBC, Hb, Ht, total protein, albumin and globulin were better for group offered with EHE-7 diet compared to untreated control, EHE-2 and EHE-5. All the measurements in the *A. hydrophila* infected fish which fed in the EHE at 7 g/kg DM (EHE-7) showed similar values compared with the control and the treatment groups which received antibiotic. The fish fed EHE-5 showed lower cumulative mortality than
fish fed with EHE-2 and untreated control, while the group fed with EHE-7 had the lowest cumulative mortality among others. The results of the 4th study showed that inclusion of *M. alba* foliage extract (MFE) did not improve the growth performance. The values of RBC, Hb and serum albumin and total protein were all higher for the treatment MFE-5 and MFE-7 than other treatments. The meat from fish fed MFE-5 and MFE-7 had significantly greater total phenols content than other dietary groups. The free radical-scavenging (DPPH) activity of meat from fish fed MFE was significantly improved. The DPPH-scavenging effect of the MFE-7 diet was higher than that of the control, MFE-2 and MFE-5 diets. Dietary MFE (at any level) did not affect the lipid oxidation (TBARS) of meat. It was shown that storage time had significant effect on meat antioxidative potential. In the challenge test, all the measurements (RBC, Hb, Ht, total protein, albumin and globulin) in the *A. hydrophila* infected fish fed with the MFE-5 and MFE-7 diets showed similar values compared with the control treatments (healthy control and antibiotic treated control). Cumulative mortality decreased by inclusion of the extract in the diet and the fish fed MFE-7 had the lowest cumulative mortality over the period of infection. Results of the 5th study showed that growth performance improved in fish fed EHE supplemented diet compared to other groups. The values of RBC counts, Hb and serum albumin and total protein were all higher for the treatments with EHE, MFE and E-ME than for the control treatment. The meat from fish fed with different extracts (EHE, MFE and E-ME diets) had significantly greater total phenols content as well as free radical-scavenging (DPPH) effect than the meat of fish fed with the control diet. The lipid oxidation (TBARS) values of fish fed EHE, MFE and E-ME diets did not increase during storage, while that of control group increased. In the present experiment,
determination of apparent digestibility showed that the digestibility for dry matter and crude protein were higher for the fish fed EHE diet than the MFE and control diets. Post infection hematological profile revealed that fish fed with EHE, MFE and E-ME diets had RBC, Hb, Ht, total protein, albumin and globulin values comparable with healthy and antibiotic treated controls. Furthermore, the cumulative mortality in the fish that received EHE, MFE and E-ME diets were much lower than untreated groups. Histological assessment of intestine in this experiment showed no abnormalities.

In conclusion, these studies suggested that the methanolic extract of *E. hirta* and *M. alba* foliage were found to be effective in growth improvement and bacterial disease prevention in African catfish. On the other hand, the benefits obtained from the inclusion of mixed-herbal extracts were not synergistic.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

HERBA UBATAN SEBAGAI PENGGALAK PERTUMBUHAN DAN KESIHATAN PADA IKAN KELI AFRIKA (Clarias gariepinus, Burchell)

Oleh

ATEFEH SHEIKHLAR

Ogos 2012

Pengerusi : Professor Abdul Razak Alimon, PhD

Fakulti : Pertanian

Dalam mengkaji potensi antimikrob ekstrak akuas dan metanol empat jenis tumbuh-tumbuhan, bahagian aerial Euphorbia hirta, biji halba, kulit lemon dan daun Morus alba pada kadar pertumbuhan dan rawatan Aeromonas hydrophila pada ikan keli Afrika, lima siri eksperimen dijalankan. Untuk eksperimen pertama, kesan ekstrak akuas dan metanol bahagian aerial Euphorbia hirta, biji halba, kulit lemon dan daun Morus alba pada dua jenis bakteria Gram negatif (Aeromonas hydrophila, Escherichia coli) dan dua jenis bakteria Gram-positif (Streptococcus agalactiae, Staphylococcus aureus) dikaji dan sebatian fitokimia ekstrak herba ditentukan. Pada eksperimen pertama, ekstrak akua dan metanolik diperolehi dengan menggunakan air dan metanol. Teknik resapan cakerakertas digunakan untuk memeriksa ciri-ciri antimicrobial pada setiap ekstrak terhadap bakteria
Eksperimen telah dijalankan di Unit Kesihatan Haiwan Akuatik, Fakulti Perubatan Veterinar, Universiti Putra Malaysia. Benih ikan keli Afrika (Clarias gariepinus) yang digunakan untuk kajian ini diperolehi daripada ladang tempatan. Ikan ditimbang dan ditempatkan di 100-l akuaria dengan kapasiti 30 ikan per akuarium. Berat awal setiap ikan ialah sekitar 9.5. Setiap rawatan mempunyai tiga replikat dan ikan diberi makan selama 60 hari (eksperimen pemberian makanan) dan 30 hari (ujian cabaran). Prestasi pertumbuhan, parameter hematologi, aktiviti antioksida daging dan kematian kumulatif telah ditentukan di dalam kajian ini. Hasil kajian berdasarkan zon perencatan, menunjukkan bahawa ekstrak akuas herba dan kulit lemon mempunyai aktiviti antibakteria yang lemah. Walaubagaimanapun, ekstrak akuas E. hirta dan daun Morus alba (EH dan MF) pada kepekatan 100 mg/ml menunjukkan aktiviti yang sederhana. Ekstrak methanolic kesemua herba mempamerkan aktiviti antimikrob yang kuat terhadap patogen yang dikaji jika dibandingkan dengan ekstrak akuas. Antara keseluruhan ekstrak methanolic, EH dan MF (pada 100 mg/ml) mempunyai aktiviti yang paling kuat, sementara yang lain menunjukkan aktiviti sederhana atau lemah. Tambahan lagi, hasil menunjukkan Aeromonas hydrophila adalah mikroorganisma yang dikaji paling sensitif, dengan zon perencatan terbesar dengan kehadiran ekstrak methanolic yang didapati daripada EH dan MF. Kajian diteruskan dengan pengesanan kandungan aktif ekstrak herba yang tersebut sebelumnya. Pengesanan fitokimia ekstrak methanolic E. hirta dan daun Morus alba (EHE dan MFE) didapati mengandungi metabolit sekunder (fitokimia) seperti fenol, minyak mudah meruap, tanin, saponin, steroid, flavonoid, terpenoid dan alkaloids. Kajian seterusnya direka bentuk untuk menilai penambahan diet ekstrak tersebut (pada tahap yang berbeza) pada ikan keli Afrika. Berkenaan perkara ini,
penilaian kesan EHE dan MFE sebagai diet tambahan untuk pertumbuhan hematologi dan histologi (ginjal dan hati) dilakukan dan keputusan menunjukkan tiada kesan negatif EHE dan MFE (7g/kg DM) pada ikan yang diberi makan diet secara ujikaji, sementara penambahan tahap EHE dan MFE kepada 9 g/kg terdapat sebahagian perubahan negatif pada pertumbuhan, ciri-ciri hematologi dan penilaian histologi diperhatikan.

Kesan penambahan EHE dalam diet untuk pertumbuhan dan rawatan penyakit pada ikan dinilai pada kajian seterusnya. Keputusan menunjukkan prestasi pertumbuhan dipengaruhi oleh rawatan pemakanan, tambahan pula kadar kematian menurun pada ikan yang diberi makan EHE-5 dan EHE-7 (5 dan 7 g/kg DM) diet tambahan. Sel darah merah, Hb dan albumin meningkat dalam ikan yang diberi makan diet EHE-7 berbanding kumpulan lain. Isi daging daripada ikan yang diberi diet tambahan EHE (EHE-7) mempunyai kandungan jumlah fenol dan kesan hapus sisa radikal (DPPH) yang tinggi berbanding kumpulan diet yang lain. Diet EHE-7 memberi kesan pengoksidaan lipid (TBARS) pada isi daging juga. Hasil profil hematologi selepas infeksi A. hydrophila menunjukkan RBC, Hb, Ht, jumlah protin, albumin dan globulin adalah lebih baik untuk kumpulan yang diberikan diet EHE-7 berbanding kumpulan kawalan, EHE-2 dan EHE-5. Semua pengukuran ikan yang diinfeksi A. hydrophila dimana diberi makan EHE 7g/kg DM (EHE-7) menunjukkan kepekatan sama berbanding dengan kawalan dan rawatan yang menerima antibiotik Ikan yang diberi diet EHE-5 menunjukkan kematian kumulatif yang rendah jika dibandingkan dengan EHE-2 dan kawalan yang tidak dirawat sementara kumpulan yang diberi makan EHE-7 mempunyai kematian kumulatif yang paling rendah berbanding kumpulan lain yang diberi diet EHE-2 dan EHE-5.

Nilai pengoksidaan lipid (TBARS) ikan yang diberi diet EHE, MFE dan E-ME tidak bertambah sepanjang proses penyimpanan, sementara kumpulan kawalan adalah meningkat. Dalam eksperimen ini, penentuan kebolehcernaan ketara menunjukkan kebolehcernaan bahan kering dan protin mentah adalah tinggi pada ikan yang diberi diet EHE berbanding diet MFE dan kawalan. Profil hematologi selepas jangkitan menunjukkan ikan yang diberi diet EHE, MFE dan E-ME mempunyai nilai RBC,
Hb, Ht, jumlah protin, albumin dan globulin berbanding dengan kumpulan yang sihat dan kumpulan kawalan yang dirawat dengan antibiotik. Tambah lagi, kematian kumulatif pada ikan yang diberi diet EHE, MFE dan E-ME adalah rendah jika dibandingkan dengan kumpulan yang tidak menerima rawatan dimana menyokong pemerhatian eksperimen sebelum ini.

Penaksiran histologi usus dalam eksperimen ini menunjukkan tiada keabnormalan. Akhir sekali, kajian ini mencadangkan ekstrak methanol of *E. hirta* dan daun *M. alba* didapati efektif dalam memperbaiki pertumbuhan dan rawatan penyakit bakteria pada ikan keli Afrika dan kelebihan didapati daripada tindakan penambahan ekstrak.
ACKNOWLEDGEMENTS

First of all, I express thanks to God. I hope to live each day better than the last so that I can please him. I would like to express my profound gratitude and very sincere thanks to my supervisor Professor Dr. Abdul Razak Alimon, for his invaluable guidance, concern, patience, encouragement and constructive instructions throughout my research. I am very grateful to my co-supervisors Associate Professor Dr. Hassan Mohd Daud and Associate Professor Dr. Che Roos Saad for their assistance, suggestion and advice. Most of all, I deeply appreciate the respect and confidence they have shown me, to allow me to flourish as a scientist and a person.

I wish to thank all the staff and graduate students of the Department of Animal Science and Faculty of Veterinary Medicine, especially Aquatic Animal Health Laboratory members for their helpfulness and friendship, with special thanks to Miss Ruhil Hayati Hamdan and other friends.

I would like to express many thanks to my beloved family for supporting me throughout my graduate studies. They have taught me that having good morals, working hard, and believing in yourself can take you far in life.
I certify that a Thesis Examination Committee has met on 8.8.2012 to conduct the final examination of Atefeh Sheikhlar on his Doctor of Philosophy thesis entitled “Medicinal herbs as growth and health promoters in African catfish (Clarias gariepinus, Burchell, 1822)” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy (PhD).

Members of the Examination Committee are as follows:

Professor
Universiti Putra Malaysia
(Chairman)

Professor
Universiti Putra Malaysia
(Internal Examiner)

Professor
Universiti Putra Malaysia
(Internal Examiner)

Professor
(External Examiner)

Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

BUJANG KIM
HUAT, PhD
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Hassan Mohd Daud, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Che Roos Saad, PhD
Associate Professor
Department of aquaculture
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate studies
Universiti Putra Malaysia

Date:
Declaration

I declare that the thesis is my original work except for qualification and citation which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

ATEFEH SHEIKHLAR

Date: 8.August.2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxix</td>
</tr>
</tbody>
</table>

CHAPTERS

1 GENERAL INTRODUCTION

1

2 LITERATURE REVIEW

2.1 African catfish (*Clarias gariepinus*)

2.1.1 Spawning and rearing 6

2.2 Medicinal plants 7

2.2.1 The importance of medicinal plants as growth promoters antimicrobial and antioxidant agent 8

2.2.2 Medicinal plants as growth promoters 9

2.2.3 Medicinal plants as antimicrobial agent 10

2.2.4 Medicinal plants as antioxidant agent 15

2.2.5 Other effects of medicinal plants 17

2.3 *Trigonella foenum-graecum* (Fenugreek)

2.3.1 Botanical characteristics of *Trigonella foenum-graecum* 19

2.3.2 Chemical compound of *Trigonella foenum-graecum* 20

2.3.3 Medicinal properties of *Trigonella foenum-graecum* 21
2.4 Citrus limon (Lemon)
 2.4.1 Botanical characteristics of Citrus limon 23
 2.4.2 Medicinal properties of Citrus limon 23
 2.4.3 Chemical compound of Citrus limon 24

2.5 Euphorbia hirta
 2.5.1 Botanical characteristics of Euphorbia hirta 27
 2.5.2 Medicinal properties of Euphorbia hirta 28
 2.5.3 Chemical compound of Euphorbia hirta 28

2.6 Morus alba (White mulberry)
 2.6.1 Botanical characteristics of Morus alba 31
 2.6.2 Medicinal properties of Morus alba 31
 2.6.3 Chemical compound of Morus alba 32

3 GENERAL METHODOLOGY

3.1 Herbs 36
3.2 Preparation of herbal extracts (water and methanol) 37
3.3 Fish and rearing system 37
3.4 Water quality 38
3.5 Growth performance 38
3.6 Blood collection 39
3.7 Histological assessment 40
3.8 Determination of antioxidative potential 40
 3.8.1 Total phenolics determination 41
 3.8.2 Determination of 1, 1-Diphenyl-2-Picrylhydrazyl Radical-Scavenging Activity (DPPH) 42
 3.8.3 Determination of 2-Thiobarbituric Acid-Reactive Substances (TBARS) 42
3.9 Determination of Median Lethal Dose (LD_{50}) 43
3.10 Post infection sampling 44

4 SCREENING OF Euphorbia hirta, Morus alba, Citrus limon AND Trigonella foenum-graecum EXTRACTS FOR ANTIMICROBIAL PROPERTIES AND PHYTOCHEMICAL COMPOUNDS

4.1 Introduction 45
4.2 Materials and methods 49
 4.2.2 Preparation of herbal extracts (water and methanol) 49
 4.2.3 Bacterial strains and culture conditions 49
 4.2.4 Bacterial cell suspension preparation 50
 4.2.5 Disk diffusion method to determine antimicrobial sensitivity 50
4.3 Phytochemical compounds determination 51
 4.3.1 Tannin 51
 4.3.2 Steroid 52
 4.3.3 Flavonoid 52
5 THE EFFECTS OF DIETARY SUPPLEMENTATION OF CRUDE METHANOLIC EXTRACTS OF Euphorbia hirta AND Morus alba FOLIAGE ON GROWTH PERFORMANCE, SURVIVAL RATE, HEMATOLOGICAL PARAMETERS AND HISTOLOGY OF LIVER AND KIDNEY IN AFRICAN CATFISH (Clarias gariepinus)

5.1 Introduction
5.1.1 Objectives
5.2 Materials and methods
5.2.1 Plant materials
5.2.2 Herbal collection and preparation of extracts
5.2.3 Experimental design
5.3 Euphorbia hirta experiment
5.3.1 Diets and experimental design
5.3.2 Fish and rearing system
5.3.3 Water quality
5.3.4 Growth performance
5.3.5 Blood collection
5.3.6 Histological assessment
5.4 Morus alba experiment
5.4.1 Diets and experimental system
5.4.2 Fish and rearing system
5.4.3 Water quality
5.4.4 Growth performance
5.4.5 Blood collection
5.4.6 Histological assessment
5.5 Statistical analysis
5.6 Results
5.6.1 Euphorbia hirta experiment
5.6.2 Growth performance
5.6.3 Hematological and biochemical parameters
5.6.4 Histological assessment
5.7 Results
5.7.1 Morus alba experiment
5.7.2 Growth performance
6 THE EFFECTS OF DIETARY *Euphorbia hirta* EXTRACT ON GROWTH PERFORMANCE, ANTIOXIDANT ACTIVITY, HEMATOLOGY AND PREVENTION OF INFECTION WITH *Aeromonas hydrophila* IN AFRICAN CATFISH (*Clarias gariepinus*)

6.1 Introduction 91
 6.1.1 objectives 93
6.2 Materials and methods 94
 6.2.1 Plant materials 94
 6.2.2 Herbal collection and preparation of extracts 94
 6.2.3 Tested bacteria and culture media 94
 6.2.4 Experimental design 94
6.3 Feeding experiment 95
 6.3.1 Diets and experimental system 95
 6.3.2 Fish and rearing system 97
 6.3.3 Water quality 97
 6.3.4 Growth performance 97
 6.3.5 Blood collection 97
 6.3.6 Feed sampling 97
 6.3.7 Determination of antioxidative potential 98
6.4 Challenge test 98
 6.4.1 Determination of Median Lethal Dose (LD$_{50}$) 98
 6.4.2 Diets and experimental system 98
 6.4.3 Fish and rearing system 100
 6.4.4 Water quality 100
 6.4.5 Growth performance 100
 6.4.6 Blood sampling 100
 6.4.7 Post infection sampling 100
6.5 Statistical analysis 100
6.6 Results 102
 6.6.1 Feeding experiment 102
 6.6.2 Water quality assessment 102
 6.6.3 Growth performance 103
 6.6.4 Hematological and biochemical parameters 104
 6.6.5 Antioxidative potential of fish meat 105
6.7 Challenge test 107
 6.7.1 Median Lethal Dose (LD$_{50}$) 107
 6.7.2 Growth performance 110
 6.7.3 Hematological and biochemical indices 118
 6.7.4 Cumulative mortality 109
7 THE EFFECTS OF DIETARY *Morus alba* FOLIAGE EXTRACT ON GROWTH PERFORMANCE, HEMATOLOGY, ANTIOXIDANT ACTIVITY AND PREVENTION OF INFECTION WITH *Aeromonas hydrophila* IN AFRICAN CATFISH (*Clarias gariepinus*)

7.1 Introduction

7.1.1 Objectives

7.2 Materials and methods

7.2.1 Plant materials

7.2.2 Herbal collection and preparation of extracts

7.2.3 Tested bacteria and culture media

7.2.4 Experimental design

7.3 Feeding experiment

7.3.1 Diets and experimental system

7.3.2 Fish and rearing system

7.3.3 Water quality

7.3.4 Growth performance

7.3.5 Blood collection

7.3.6 Feed sampling

7.3.7 Determination of antioxidative potential

7.4 Infectivity experiment

7.4.1 Determination of Median Lethal Dose (LD\(_{50}\))

7.4.2 Diets and experimental system

7.4.3 Fish and rearing system

7.4.4 Water quality

7.4.5 Growth performance

7.4.6 Blood collection

7.4.7 Post infection sampling

7.5 Statistical analysis

7.6 Results

7.6.1 Feeding experiment

7.6.2 Water quality

7.6.3 Growth performance

7.6.4 Hematological and biochemical parameters

7.6.5 Antioxidative potential of meat

7.7 Challenge test

7.7.1 Median Lethal Dose (LD\(_{50}\))

7.7.2 Growth performance

7.7.3 Hematological and biochemical indices

7.7.4 Cumulative mortality

7.8 Discussion

7.9 Conclusion
8 THE EFFECTS OF MIXED-HERBAL (Euphorbia hirta AND Morus alba FOLIAGE) EXTRACT ON GROWTH PERFORMANCE, ANTIOXIDTIVE ACTIVITY, NUTRIENT DIGESTIBILITY, HEMATOLOGICAL PARAMETERS, INTESTINAL CHARACTERISTICS AND PREVENTION OF INFECTION WITH Aeromonas hydrophila IN AFRICAN CATFISH (Clarias gariepinus)

8.1 Introduction 138
8.1.1 Objectives 140

8.2 Materials and methods 141
8.2.1 Plant materials 141
8.2.2 Herbal collection and preparation of extracts 141
8.2.3 Tested bacteria and culture media 141
8.2.4 Experimental design 141

8.3 Feeding experiment 142
8.3.1 Diets and experimental system 142
8.3.2 Fish and rearing system 144
8.3.3 Water quality 144
8.3.4 Calculation 144
8.3.5 Determination of antioxidative potential 144
8.3.6 Post infection sampling 144
8.3.7 Digestibility procedure 145
8.3.8 Chemical analysis 145
8.3.9 Proximate analysis 145
8.3.10 Apparent nutrient digestibility 146

8.4 Challenge test 146
8.4.1 Determination of Median Lethal Dose (LD₅₀) 146
8.4.2 Diets and experimental system 147
8.4.3 Fish and rearing system 148
8.4.4 Water quality 148
8.4.5 Growth performance 148
8.4.6 Blood sampling 149
8.4.7 Post infection sampling 149

8.5 Statistical analysis 149

8.6 Result 150
8.6.1 Feeding experiment 150
8.6.2 Water quality 150
8.6.3 Growth performance 151
8.6.4 Hematological and biochemical parameters 152
8.6.5 Antioxidative potential of meat 153
8.6.6 Apparent digestibility 155
8.6.7 Histological assessment 155

8.7 challenge test 157
8.7.1 Growth performance 157
8.7.2 Hematological and biochemical parameters 158
8.7.3 Cumulative mortality 160
8.8 Discussion 161
8.9 Conclusion 165

9 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATION 166

10 CONCLUSION 172

11 RECOMMENDATION 173

REFERENCES 174

BIODATA OF STUDENT PUBLICATIONS 213

PUBLICATIONS 213