UNIVERSITI PUTRA MALAYSIA

SHOOT MULTIPLICATION, MICROTUBER PRODUCTION AND EVALUATION OF ANTIOXIDANT AND CANCER CELL CYTOTOXICITY ACTIVITIES OF CHLOROPHYTUM SANT. & FERNANDEZ

MEHDI FARSHAD ASHRAF

FP 2012 8
SHOOT MULTIPLICATION, MICROTBBER PRODUCTION AND EVALUATION OF ANTIOXIDANT AND CANCER CELL CYTOTOXICITY ACTIVITIES OF CHLOROPHYTUM SANT. & FERNANDEZ

By

MEHDI FARSHAD ASHRAF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

July 2012
Dedicated

To my beloved wife, Elmira for all her love, support and patience and my son Arshan. Special thanks to my father and mother, who inspired me
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the Degree of Doctor of Philosophy

SHOOT MULTIPLICATION, MICROTUBER PRODUCTION AND EVALUATION OF ANTIOXIDANT AND CANCER CELL CYTOTOXICITY ACTIVITIES OF CHLOROPHYTUM SANT. & FERNANDEZ

By:

MEHDI FARSHAD ASHRAF

July 2012

Chair: Associate Professor Maheran Bt Abd Aziz, PhD
Faculty: Agriculture

Chlorophytum borivilianum is an important medicinal plant. The tuberous roots possess immunomodulatory and adaptogenic properties, and are used to cure impotency, sterility and enhance male potency. The seeds have poor germination percentage (11-24%), low viability and long dormancy period. Considering Safed musli is an endangered species and the limited availability of planting materials, the use of tissue culture system could provide a rapid method for mass propagating the plant. In this study, young shoot buds of C. borivilianum were cultured on Murashige and Skoog (MS) medium containing BAP and Kn, both at 0, 8.88, 17.8 and 26.6 µM, either individually or in combination. Proliferated shoots were subcultured on fresh medium of the same constituents at 3 weeks interval. The combination of 8.88 µM BAP and 8.88 µM Kn was most suitable for shoot multiplication and elongation of C. borivilianum. In vitro shoot tips of C. borivilianum were cultured for microtuber induction on MS solid medium containing different concentrations of 0, 315, 630, 950, 1265 and 1580 µM CCC combined with
30, 60 and 90 g l\(^{-1}\) of sucrose. The combination of 950 \(\mu\)M CCC and 60 g l\(^{-1}\) sucrose produced high number of microtubers with increased length. Upon using stationary liquid MS medium containing the different combinations of CCC and sucrose as applied for solid medium, microtuber production was improved and the best combination was also in medium containing 950 \(\mu\)M CCC and 60 g l\(^{-1}\) sucrose. For optimization of microtuber production, comparison between solid, stationary and shake liquid cultures was carried out. Liquid culture with shaking at 80rpm resulted in more than 2.5 fold increase in microtuber production compared to solid culture. The study was extended using RITA system for scaling up of microtuberization. Microtuberization was enhanced and hyperhydricity was eliminated using 15 min immersion time for every 60 min rest period. Substitution of the optimized liquid microtuberization medium (OLMM) containing 950 \(\mu\)M CCC and 60g l\(^{-1}\) sucrose with liquid hormone-free MS medium (MSO) on week 6 of culture was more economical for microtuberization than maintaining the culture throughout the 9 weeks on OLMM. Quantitation of total saponin showed a higher content in microtubers than in mother plant tubers. Analysis of antioxidant activity of crude and total saponin extracts from mother plant tubers of \textit{C. borivilianum} indicated higher antioxidant activity of crude extract using DPPH and BCB assays, while higher chelating activity was shown by total saponin using FIC assay. Cytotoxicity evaluation of crude and total saponin extracts against MCF7, PC3 and HCT116 cancer cell lines using MTT cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF7 human breast cancer cell line. In conclusion, shoot
regeneration on solid medium, microtuber production on solid medium, in liquid medium and upscaling of microtuber production using a RITA system had been successfully established for *C. borivilianum*. The study also provided valuable information on the antioxidant and cytotoxicity activities of crude and total saponin extracts from tubers of *C. borivilianum*.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Doktor Falsafah

PENGGANDAAN PUCUK, PENGELUARAN MIKROTUBER, DAN PENILAIAN ANTIOKSIDAN DAN AKTIVITI SITOTOKSIK SEL KANSER BAGI CHLOROPHYTUM BORIVILIANUM SANT & FERNANDEZ

Oleh:
MEHDI FARSHAD ASHRAF

Julai 2012

Pengerusi: Profesor Madya Maheran bt Abd Aziz, PhD
Fakulti: Pertanian

μm Kn didapati paling sesuai untuk penggandaan dan pemanjangan pucuk C. borivilianum. Pucuk in vitro C. borivilianum telah dikulturkan untuk induksi mikrotuber pada medium MS pepejal yang mengandungi kepekatan CCC berbeza 0, 315, 630, 950, 1265 dan 1580 μM digabungkan dengan 30, 60 dan 90 g l⁻¹ sukrosa. Gabungan 950 μM CCC dan 60 g l⁻¹ sukrosa menghasilkan bilangan mikrotuber yang tinggi dan lebih panjang. Dengan penggunaan medium MS cecair statik yang mengandungi kombinasi berbeza CCC dan sukrosa sama seperti yang digunakan untuk medium pepejal, pengeluaran mikrotuber bertambah baik dan kombinasi terbaik juga adalah pada medium mengandungi 950 μM CCC dan 60 g l⁻¹ sukrosa. Untuk mengoptimumkan penghasilan mikrotuber, perbandingan di antara kultur pepejal, cecair statik dan cecair goncang telah dijalankan. Kultur cecair dengan penggoncangan pada 80rpm menghasilkan lebih 2.5 kali ganda pembentukan mikrotuber berbanding kultur pepejal. Kajian diteruskan menggunakan sistem RITA untuk meningkatkan penghasilan mikrotuber. Pengeluaran mikrotuber dapat dipertingkatkan dan hiperhidrisiti dihapuskan dengan kaedah rendaman selama 15 minit bagi setiap 60 minit masa rihat. Pengukuran jumlah saponin menunjukkan kandungannya lebih tinggi di dalam mikrotuber berbanding tuber induk. Analisis aktiviti antioksidan bagi ekstrak mentah dan jumlah saponin dari tuber induk C. borivilianum menunjukkan aktiviti antioksidan yang lebih tinggi bagi ekstrak mentah menggunakan asai DPPH dan BCB, sementara aktiviti pengkelat lebih tinggi ditunjukkan oleh jumlah saponin melalui asai FIC. Penilaian ke atas aktiviti sitotoksik bagi ekstrak mentah dan jumlah saponin terhadap sel kanser MCF7, PC3 dan HCT116 menggunakan asai MTT menunjukkan aktiviti
sitotoksik yang lebih tinggi bagi ekstrak mentah berbanding jumlah saponin terhadap semua sel kanser, dan yang paling berkesan dan selektif adalah terhadap sel kanser payudara manusia MCF7. Rumusannya, regenerasi pucuk di atas medium pepejal, pengeluaran mikrotuber di atas medium pepejal, di dalam medium cecair dan peningkatan pengeluaran mikrotuber menggunakan sistem RITA telah berjaya dibangunkan untuk C. borivilianum. Kajian ini juga memberikan maklumat berguna mengenai aktiviti antioksidan dan sitotoksik bagi ekstrak mentah dan jumlah saponin dari tuber C. borivilianum.
ACKNOWLEDGEMENTS

My full praise to God for enabling and His permission to complete my study.
My sincere appreciation to my supervisor and chairperson of the supervisory committee, Assoc. Prof. Dr. Maheran bt Abd Aziz for her valuable guidance and support throughout the course of this study.

My gratitude also goes to members of my supervisory committee, Assoc. Prof. Dr. Johnson Stanslas for his constructive suggestions and patience and Assoc. Prof. Dr. Mihdzar Abd Kadir for his generous advice and assistance in my research.

My appreciation is extended to the CRDD group in Laboratory of Pharmacotherapeutics, for their helpful guidance, particularly thanks to Mr. Sagineedu, Ms. Amanda Wong and Mrs. Yik Ling Chew who taught, guided and helped me during this study. My thanks go Mrs. Nurashikin Kemat for her support and to Mr. Danaee who provided me with statistical advice.

My gratitude goes to my wife and best friend, Elmira, without whose love, encouragement and help, I would not have finished this thesis. I would also like to thank my parents for the support they provided me through my entire life.
I certify that a Thesis Examination Committee has met on 23rd July 2012 to conduct the final examination of Mehdi Farshad Ashraf on his thesis entitled “SHOOT MULTIPLICATION, MICRO TUBER PRODUCTION AND EVALUATION OF ANTIOXIDANT AND CYTOTOXIC ACTIVITIES OF CHLOROPHYTUM BORIVILIANUM” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as followed:

Name of Chairperson, PhD
Associate Professor Dr. Halimi Mohd Saud
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Name of Examiner 1, PhD
Associate Professor Dr Uma Rani Sinniah
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Name of Examiner 2, PhD
Associate Professor Datin Dr Siti Nor Akmar Abdullah
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Name of External Examiner, PhD
Associate Professor Dr Peter G. Alderson
University of Nottingham Malaysia Campus
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Maheran bt Abd Aziz, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Johnson Stanslas, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mihdzar Abd Kadir, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

__
BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MEHDI FARSHAD ASHRAF

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 5

2.1 Botany 5

2.2 Propagation of *C. borivilianum* 7

2.2.1 Organogenesis 7

2.2.2 *In vitro* tuber formation 10

2.2.3 Benefits of liquid culture 14

2.2.4 Advantages of bioreactor and temporary immersion system for plant micropropagation 16

2.3 Phytochemistry and pharmacognosy 20

3 SHOOT MULTIPLICATION AND MICROTUBER FORMATION USING SOLID CULTURE 24

3.1 Introduction 24

3.2 Materials and Methods 26

3.2.1 Explant preparation and culture 26

3.2.1.1 Shoot multiplication and elongation 26

3.2.1.2 Microtuberization 27

3.2.2 Treatments 27

3.2.2.1 Shoot multiplication and elongation 27

3.2.2.2 Microtuberization 28

3.2.3 Experimental design and data analysis 29

3.3 Results and Discussion 29

3.3.1 Shoot multiplication and elongation 29

3.3.1.1 Effect of BAP on shoot multiplication and elongation 29

3.3.1.2 Effect of Kn on shoot multiplication and elongation 30

3.3.1.3 Interaction between BAP and Kn on shoot multiplication and elongation 32

3.3.2 Microtuberization 36

3.3.2.1 Effect of CCC on microtuberization 36
3.3.2.2 Effect of sucrose on microtuberization 37
3.3.2.3 Interaction effect of CCC and sucrose on microtubereization 40

3.4 Conclusion 43

4 APPLICATION OF LIQUID CULTURE AND TEMPORARY IMMERSION SYSTEM ON MICROTUBERIZATION 45

4.1 Introduction 45

4.2 Materials and Methods 47
4.2.1 Explant preparation and culture 47
4.2.1.1 Microtuberization using stationary liquid culture 47
4.2.1.2 Comparison of solid, stationary liquid and shake liquid cultures on microtuberization 50
4.2.1.3 Effect of different immersion time and medium substitution in RITA® system on microtuberization 51
4.2.2 Treatments 51
4.2.2.1 Microtuberization using stationary liquid culture 51
4.2.2.2 Comparison of solid, stationary liquid culture and shake liquid cultures on microtuberization 52
4.2.2.3 Effect of immersion time frequency and medium substitution in RITA® system on microtuber formation of C. borivilianum 53
4.2.3 Description of the automated RITA® 55
4.2.4 Data analysis 57

4.3 Results and Discussion 57
4.3.1 Microtuberization using stationary liquid culture in C. borivilianum 57
4.3.1.1 Effect of CCC on microtuberization 57
4.3.1.2 Effect of Sucrose on microtuberization 58
4.3.1.3 Interaction of CCC and sucrose on microtuberization 60
4.3.2 Comparison of culture systems on microtuberization in C. borivilianum 69
4.3.2.1 Effect of culture system on mean number and length of microtubers 69
4.3.2.2 Effect of culture system on mean growth index and hyperhydricity 72
4.3.3 Effect of immersion time frequency and medium substitution in RITA® on microtuber formation of C. borivilianum 76
4.3.3.1 Effect of immersion time frequency on microtuber formation 76
4.3.3.2 Effect of medium substitution on microtuber formation 81

4.4 Conclusion 88
5 PHYTOCHEMICAL ANALYSIS OF C. BORIVILIANUM
5.1 Introduction 89
5.2 Materials and Methods 90
 5.2.1 Plant Material 90
 5.2.2 Chemicals 90
 5.2.3 Extraction of crude extract from tubers of C. borivilianum 91
 5.2.4 Determination and quantitation of total saponin in mother plant tubers and in vitro tubers 92
 5.2.4.1 Preparation of total saponin extract 92
 5.2.4.2 Preparation of material for total saponin determination 95
 5.2.4.3 Calibration curve 96
 5.2.4.4 Quantitation of total saponins 96
5.2.5 Methods for screening antioxidant activity 96
 5.2.5.1 DPPH radical scavenging assay 96
 5.2.5.2 Ferrous ion chelating (FIC) assay 98
 5.2.5.3 β-carotene bleaching (BCB) assay 100
5.3 Results and Discussion 102
 5.3.1 Quantitation of total saponin in mother plant tubers and in vitro tubers 102
 5.3.2 Screening of antioxidant activity 106
 5.3.2.1 DPPH radical scavenging activity 106
 5.3.2.2 Ferrous ion chelating (FIC) activity 108
 5.3.2.3 β-carotene bleaching (BCB) activity 109
5.4 Conclusion 113

6 CYTOTOXIC ACTIVITY SCREENING ON C. BORIVILIANUM 114
6.1 Introduction 114
6.2 Materials and Method 115
 6.2.1 Plant material and extract preparation for screening 115
 6.2.2 Cultures, chemicals and equipments 115
 6.2.3 Instruments 116
 6.2.4 Preparation of extracts 117
 6.2.5 Cell culture 119
 6.2.6 MTT Assay 120
6.3 Results and Discussion 122
 6.3.1 Growth inhibition values (GI50, TGI and LC50) of C. borivilianum total saponin extracts in MCF-7, PC3 and HCT 116 cell lines 122
 6.3.2 Morphological Changes on MCF7 treated cells 126
6.4 Conclusion 129

7 SUMMARY, CONCLUSION AND FUTURE DIRECTION 130
7.1 Discussion 130
7.2 Conclusion 132
7.3 Future direction 133

REFERENCES 134