

UNIVERSITI PUTRA MALAYSIA

BIOCHEMICAL AND MOLECULAR CHARACTERIZATION OF PHOSPHATE- SOLUBILIZING BACTERIA ISOLATED FROM OIL PALM SOIL

MOHAMMAD BAGHER JAVADI

ITA 2012 10

BIOCHEMICAL AND MOLECULAR CHARACTERIZATION OF PHOSPHATE- SOLUBILIZING BACTERIA ISOLATED FROM OIL PALM SOIL

By MOHAMMAD BAGHER JAVADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

December 2012

DEDICATION

To my beloved family

Ś

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BIOCHEMICAL AND MOLECULAR CHARACTERIZATION OF PHOSPHATE- SOLUBILIZING BACTERIA ISOLATED FROM OIL PALM SOILS

By

MOHAMMAD BAGHER JAVADI

December 2012

Chairman: Associate Professor Halimi Mohd Saud, PhD

Institute: Tropical Agriculture

Bacterial isolates from Malaysian oil palm soils were examined and screened for capability to solubilize calcium phosphate. In the present study, Pikovskaya (PVK) and NBRIP were chosen as the media for isolating the PSB from different Malaysian oil palm soils. Isolated bacteria were able to solubilize calcium phosphate. The phosphate solubilization ability and microbial growth were dependent on the species of bacteria. The results indicated that maximum solubilization was found up to 7.56 ppm and related to 35dr (S. marcescens). The bacterial isolates exhibited different level of phosphate solubilization when the media containing different carbon or nitrogen sources. 10upmr and 7sr bacterial isolates could solubilize insoluble phosphate with all carbon sources. In all cases, insoluble phosphate solubilization was accompanied by decreasing the pH value. All bacteria isolated were identified using 16S rRNA molecular technique except 32dr, a bacterial isolate which was isolated from Dengkil rhizosphere. The identification analysis confirmed Proteobacteria as the most abundant group in Malaysian oil palm soils. The comparison of the 16S rRNA gene sequences of phosphate solubilizing bacteria allowed differentiation between isolates at the species level across Proteobacteria and *Firmicutes* phylum but it couldn't classify isolates at strain. The desired experimental resolution for the differentiation of closely-related isolates of *Proteobacteria* and *Firmicutes* phylum was achieved by using the Rep-PCR techniques. With this approach, the polymorphism of 31 PSB from different area were observed. In the case of the PSB isolates examined here, cluster analysis of *Pseudomonas* and *Alcaligenes* species could reveal better differentiation by BOX-PCR and REP-PCR primers respectively. By using NBRIP media, 16S rDNA and Rep-PCR technique found a very fast and precise method for evaluating Phosphate solubilizing ability, finding the most effective isolates for conducting the molecular process required for creating the strain-base biofertilizer.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN BIOKIMIA DAN MOLEKUL BAKTERIA PELARUT FOSFAT PADA TANAH KELAPA SAWIT

Oleh

MOHAMMAD BAGHER JAVADI

Disember 2012

Pengerusi: Prof Madya Halimi Mohd Saud, PhD

Institut: Pertanian Tropika

Isolat bakteria daripada tanah minyak sawit Malaysia telah diperiksa dan disaring untuk keupayaan untuk melarutkan kalsium fosfat. Dalam kajian ini, Pikovskaya (PVK) dan NBRIP telah dipilih sebagai media untuk mengasingkan PSB dari tanah minyak sawit yang berbeza. Bakteria yang telah diasingkan boleh melarutkan kalsium fosfat. Keupayaan untuk melarutkan fosfat dan pertumbuhan mikrob adalah bergantung kepada spesies bakteria. Keputusan menunjukan bahawa kelarutan maksimum adalah sehingga 7.56ppm dan berkaitan dengan 35dr (S. marcescens). Bakteria isolates menunjukkan tahap untuk melarutkan fosfat yang berbeza apabila media mengandungi karbon yang berbeza atau sumber nitrogen. 10upmr dan isolat bakteria 7sr boleh melarutkan fosfat tidak larut dengan semua sumber karbon. Dalam semua kes, kelarutan fosfat tidak larut akan diikuti dengan pengurangan nilai pH. Kesemua bakteria yang diasingkan telah dikenal pasti menggunakan teknik molecular 16S rRNA kecuali 32dr, satu isolat bakteria yang telah diasingkan dari Dengkil rhizosphere. Analisis pengenalan mengesahkan bahawa Proteobacteria sebagai kumpulan yang paling banyak di tanah minyak sawit Malaysia. Perbandingan gen jujukan 16S rRNA bakteria yang melarutkan fosfat membenarkan

pembezaan antara isolat-isolat pada peringkat sepsis bagi *Proteobacteria* and *Firmicutes* filum tetapi ia tidak dapat mengklasifikasikan isolate pada peringkat strain. Resolusi eksperimen yang diingini bagi pembezaan isolate yang berkait rapat dengan *Proteobacteria* and *Firmicutes* filum telah dicapai dengan mengunakan teknik REP-PCR. Dengan pendekatan ini, polimorfisme 31 PSB daripada kawasan berbeza telah diperhatikan. Dalam kes PSB isolat yang diperiksa di sini, analisis kelompok sepsis *Pseudomonas* and *Alcaligenes* boleh mendedahkan pembezaan yang lebih baik oleh primer-primer BOX-PCR dan REP-PCR masing-masing. Dengan menggunakan media NBRIP, 16s rDNA dan teknik Rep-PCR mendapati kaedah yang cepat dan tepat untuk menilai keupayaan melarutkan fosfat, mencari isolate yang paling berkesan untuk menjalankan process molekular yang diperlukan untuk mewujudkan biobaja strain-asas.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Assoc. Prof. Dr. Halimi Mohd Saud for supervisoring my research. I would like to thank him for his mentoring, support and encouragement. I will bear in mind advice that he has given me. In addition, I would like to thank him for guiding me to the research area of microbial biotechnology and the topic of molecular markers. I would like to thank my committee members, Assoc. Prof. Dr. Wong Mui Yun and Assoc. Prof. Dr. Suhaimi Napis for their useful comments and advice throughout my study.

I would like to thank other graduate students whom I studied with, not only for their support, but also for their comradeship.

Finally, I would like to acknowledge my parents for helping me believe in myself. Thank you very much from bottom of my heart. I certify that an Examination Committee has met on July 2011 to conduct the final examination of Mohammad Bagher Javadi Nobandegani on his Doctor of philosophy thesis entitled "Molecular Characterization of Phosphate Solubilizing Bacteria in Oil Palm Soils" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Doctor of philosophy.

Member of the Examination Committee were as follows:

Name of Chairperson

Title Name of Faculty Universiti Putra Malaysia (Chairman)

Name of Examiner 1

Title Name of Faculty Universiti Putra Malaysia (Internal examiner)

Name of Examiner 2

Title Name of Faculty Universiti Putra Malaysia (Internal examiner)

Name of External Examiner 3

Title Name of Department and /or Faculty Name of Organization (University/Institute) Country (External Examiner)

BUJANG KIM HUAT,PhD

Professor and Deputy Dean School of Graduate studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of philosophy. The members of Supervisory Committee were as follows:

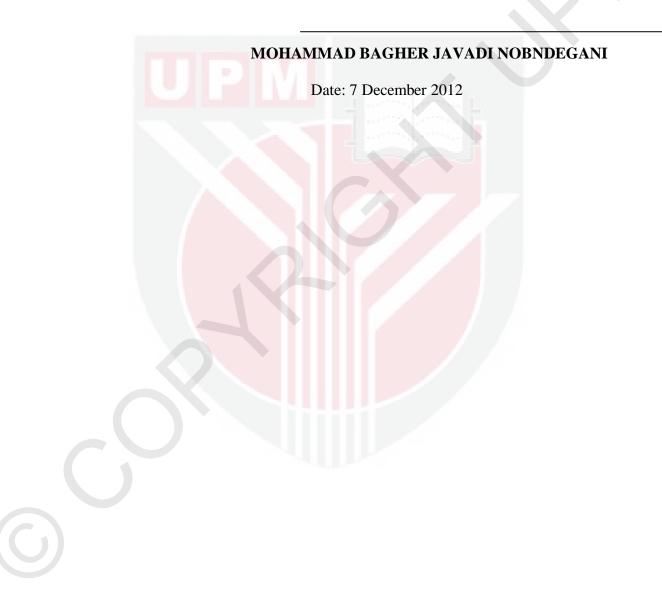
Halimi Mohd Saud, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Wong Mui Yun, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Suhaimi Napis, PhD


Associate Professor Faculty of Biotechnology and Bimolecular Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PHD Professor and Dean School of graduate studies Universiti putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	\mathbf{V}
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	6
	The Oil Palm	6
	Ecology and Geographical Distribution	8
	Climate and Soil Requirement	9
	Oil Palm Agronomic Practice	9
	Fertilizers in Malaysian Oil Palm Field	10
	Rhizosphere and Non Rhizosphere	11
	Use of Phosphate Fertilizers in Oil Palm	25
	Plantation	
	Oil Palm Industry	28
	Phosphate availability in Soil	29
	Potential P Losses in The Oil Palm Ecosystem	32
	Mineral Phosphate Solubilization	32
	Phosphate Solubilizing Bacteria as Plant Growth	34
	Promoters	
	Mechanisms of Phosphate Solubilization	36
	Organic Phosphate Solubilization	36
	Solubilization of Mineral Phosphates	37
	Mineralization of Organic Phosphorus	39
	Characterization of Phosphate Solubilizing Bacteria	40
	Genetic of Phosphate Solubilizing Bacteria	44
	Rationale for Plant Inoculation With PSB	45
	Isolation and Selection of PSB To Be Used as	46
	Inoculants	
	Methods for Studying Phosphate Solubilizing Microbe	48
	Diversity in Soils	
	The Soil Microbial Diversity Concept	49
	Measuring Soil Microbial Diversity	49
	Biochemical Based Techniques	50
	Plate Counts	50
	Community Level Physiological Profiles (CLPP)	51
	and Sole Carbon Source Utilization (SCSU)	
	Patterns	

Fatty Acid Methyl Ester (FAME) and Phospholipid Fatty Acid (PLFA) Analyses		51
Mo	blecular -Based Techniques	52
	Nucleic Acid Hybridization and Fluorescent In	52
	Situ Hybridization (FISH)	0-
	Guanine Plus Cytosine $(G + C)$ Content	53
PC	R-Based Techniques	53
10	Denaturing Gradient Gel Electrophoresis (DGGE)	54
	and Temperature Gradient Gel Electrophoresis	51
	(TGGE)	
	Random Amplified Polymorphic DNA (RAPD)	54
	Amplified Fragment Length Polymorphism	55
	(AFLP)	
	Restriction Fragment Length Polymorphism	55
	(RFLP) and Terminal Restriction Fragment	
	Length Polymorphism (T-RFLP)	
	Automated Ribosomal Intergenic Spacer Analysis	56
	(ARISA) and Ribosomal Intergenic Spacer	
	Analysis (RISA)	
	Single-Strand Conformational Polymorphism	56
	(SSCP)	
	OCHEMICAL STUDY OF PHOSPHATE	58
SC	LUBILIZING BACTERIA	
	roduction	58
Ma	aterials and Methods	61
	Soil Sampling	61
	Soil Analysis	61
	Qualitative Phosphate Solubilizing Assay	63
	Phosphate solubilization in PVK and NBRIP	63
	Media	
	pH of the Culture	64
	Effect of Different Carbon and Nitrogen Sources	64
	on P solubilization	
	Phosphate Solubilization in Broth Culture	65
	Statistical Analysis	65
	sults and Discussion	66
Co	nclusions	115
ID	ENTIFICATION OF PHOSPHATE	117
	DUBILIZING BACTERIA USING 16S rDNA	11,
	S A MOLECULAR MARKER	
Int	roduction	117
	aterials and Methods	121
	Microorganism and Growth Condition	121
	Bacterial DNA Preparation	121
	Determination of DNA Concentration and Purity	122
	PCR Primers	122
	PCR Amplification	123
Re	sults and Discussion	125

IS

	PHOSPHATE SOLUBILIZING BACTERIA BASI ON Rep-PCR GENOMIC FINGERPRINTING	Ľ
Ι	ntroduction	141
Ν	Aaterials and Methods	145
	Bacterial DNA Preparation	145
	Whole Cells From Pure Liquid Cultures	145
	Whole Cell after Alkaline Lysis	146
	Purified Genomic DNA	146
	PCR Amplification	146
	Gel Electrophoresis	147
	Cluster Analysis	148
R	Results and Discussion	149
C	Conclusions	172
F	SUMMARY,GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH	174

REFERENCES APPENDICES

C