

UNIVERSITI PUTRA MALAYSIA

FABRICATION AND CHARACTERIZATION OF VARISTOR-POLYMER COMPOSITE BASED ON ZINC OXIDE

ASMA FATEHI

FS 2012 72

FABRICATION AND CHARACTERIZATION OF VARISTOR-POLYMER COMPOSITE BASED ON ZINC OXIDE

ASMA FATEHI

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA December 2012

xxiii

FABRICATION AND CHARACTERIZATION OF VARISTOR-POLYMER COMPOSITE BASED ON ZINC OXIDE

By ASMA FATEHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2012

Abstract of thesis presented to the Senate of University Putra Malaysia, in fulfillment of the requirement for the degree of Master of Science

FABRICATION AND CHARACTERIZATION OF VARISTOR-POLYMER COMPOSITE BASED ON ZINC OXIDE

By ASMA FATEHI

December 2012

Chairman: Mansor Bin Ahmad, PhD Faculty: Science

This research focuses on fabricating a variator-polymer composite based on nanosized ZnO and micro-sized ZnO, and comparing their current-voltage characteristics. In addition, the influence of each dopant (Bi_2O_3 , MnO, Co_3O_4) on the physical and electrical properties of variator-polymer composite based on zinc oxide is investigated.

Nano-sized varistor powder, micro-sized varistor powder and Bi₂O₃-MnO-Co₃O₄ doped ZnO micro powder were prepared via a combined solution and standard ceramic processing. Fabrication of a varistor-polymer nanocomposite and microcomposite was accomplished by the melt-blending technique. The characterization of varistor-polymer composites was carried out by X-ray diffraction data (XRD) analysis, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Energy dispersive X-ray (EDAX), Thermal Gravimetry Analysis (TGA) and Fourier Transform Infra-red (FTIR) spectroscopy.

The XRD pattern of nanocomposite revealed the high crystallinity of the composite compared to microcomposite. FTIR spectra confirmed physical interacting of polymer and varistor powder. TGA and DSC results revealed that temperature degradation and melting temperatures of nano composite were increased compared to micro composite. Manganese Oxide as one dopant of varistor powder stabilize thermal resistivity of the varistor-polymer composite compared to other metal oxides. The TEM image showed the spherical morphology of the nano-sized filler with the average size below 50 nm which were distributed homogeneously within the polymer. While, the SEM micrograph revealed the non uniform distribution of micro-sized fillers. FESEM and EDAX showed the presence of a bismuth-rich phase and a ZnO phase in the varistor powder. The current-voltage (I-V) characteristics suggested varistor-like behaviour when the concentration of nano-sized filler increased in contrast to micro-sized filler. Bismuth Oxide (as one dopant of varistor powder) has an important role in nonlinear properties of varistor-polymer composites.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FABRIKASI DAN PENCIRIAN KOMPOSIT VARISTOR-POLIMER BERDASARKAN ZINK OKSIDA

Oleh

ASMA FATEHI

Disember 2012

Pengerusi: Mansor Bin Ahmad, PhD

Fakulti : Sains

Kajian ini memberi tumpuan kepada penghasilan komposit varistor-polimer berdasarkan ZnO bersaiz nano dan ZnO bersaiz mikro, dan membandingkan ciri-ciri arus voltan semasa mereka. Di samping itu, pengaruh setiap bahan dop (Bi₂O₃, MnO, Co₃O₄) pada sifat fizikal dan elektrik komposit varistor-polimer berdasarkan Zink Oksida dikaji.

Serbuk varistor bersaiz nano, serbuk varistor bersaiz mikro dan Bi₂O₃-MnO-Co₃O₄ terdop serbuk mikro ZnO telah disediakan melalui penyelesaian gabungan dan pemprosesan seramik standard. Fabrikasi komposit nano dan komposit mikro varistor-polimer telah dicapai oleh teknik adunan cair. Pencirian komposit varistor-polimer telah dijalankan oleh analisis Data Pembelauan Sinar-X (XRD), Mikroskopi Elektron Transmisi (TEM), Mikroskopi Pengimbasan Elektron Pelepasan medan (FESEM), Tenaga Serakan Sinar-X (EDAX), Analisis Gravimetry Terma (TGA) dan Spektroskopi Jelmaan Fourier Infra-merah (FTIR).

Corak XRD komposit nano mendedahkan penghabluran tinggi komposit berbanding dengan komposit mikro. Spektra FTIR mengesahkan wujudnya interaksi fizikal polimer dan serbuk varistor. Keputusan TGA dan DSC menunjukkan bahawa degradasi suhu dan suhu peleburan komposit nano telah meningkat berbanding dengan komposit mikro. Mangan Oksida sebagai bahan dop serbuk varistor menstabilkan kerintangan haba komposit varistor-polimer berbanding dengan oksida logam lain. Imej TEM menunjukkan morfologi sfera pengisi bersaiz nano dengan saiz purata di bawah 50 nm yang ditaburkan dengan seragam dalam polimer. Manakala, mikrograf SEM mendedahkan taburan tidak seragam pengisi bersaiz mikro. FESEM and EDAX menunjukkan kehadiran satu fasa kaya dengan bismut dan fasa ZnO dalam serbuk varistor. Ciri-ciri arus voltan (I-V) mencadangkan tindakan seperti varistor apabila konsentrasi pengisi bersaiz nano meningkat berbeza dengan pengisi bersaiz mikro. Bismut Oksida (sebagai satu bahan dop serbuk varistor) mempunyai peranan yang penting dalam sifat-sifat tak linear komposit varistor-polimer.

AKNOWLEDGEMENTS

First and for most, I would like to extend my deepest praise to Allah who has given me the patience, strength, purpose and courage to complete this project by his mercies.

For the most special thanks, I would like to express my appreciation to the following individuals who have provided contributions; my proficient supervisor Associate Prof. Dr. Mansor Bin Ahmad for his guidance, updated knowledge, suggestions and strong support during my studies. I am highly indebted and extremely grateful. I would like to extend my sincere appreciation to my supervision committee member Prof. Dr. Azmi Zakaria and Dr. Shahrom Mahmud(USM) for introducing me to the field of varistor and graciously agreeing to be on my committee. I am indeed indebted to Prof. Azmi Zakaria for allowing me to use his laboaratory facilities. I also express appreciation to Prof. Dr. Mohd Aspollah Hj Md Sukari, Prof.Dr. Mohd Zobir Hussein, Associate Prof. Dr. Abdul Halim Abdullah, Associate Prof. Dr. Nor Azah Yusof, Dr. Nor Azowa Ibrahim, Dr. Tan Kar Ban, Prof. Dr. Abdul Halim Shaari, Associate Prof. Dr. Mansor Hashim , Dr. Halimah Mohamed Kamari and Dr. Jumiah Hassan. Special thanks to Prof. Dr. Karen Anne Crouse for her advice.

I wish to thank my mother Nayereh and to my father Ibrahim for their endless love, everlasting prayers, immense patient and diligence support. Words cannot explain my love and gratitude to them. I know that I have made you proud. I am highly grateful to my brother; Alireza and my family who always believed in me, love and supported me.

In measuring the characteristics of my sample, the efforts of Mr Rafi and Azmi and Mrs Maizatul from Institute of Bioscience UPM for (FESEM, EDX,VP SEM), (TEM), Mrs Kamsiah and Mrs Linda from Physics Dept. UPM (XRD), Mrs Zaidina Mohd Daud and Nor Azlina Shari from chemistry Dept. for TGA,DTG and DSC measurements and Mrs Rusnani Amirudin from Chemistry Dept. for FTIR measurements are highly acknowledged. I am grateful to UPM Library which I benefited from all aspects of literature sourcing and searching.

Special thanks to all physics and chemisty Dept. Staff especially Mrs Nuriza from physics Dept. I am please about my colleagues; Sabri, Fiza, Ain, Anith, Guita, Wanhaizum, Shazana, Suziana, Faizal, Devandran, Siva, Soleha, Mohammad, Gurgiana, Mey Lee, Ming Wei, Eshragh, Lim, Nick for their hospitality, opinions and highly support especially in crucial moments. I enjoyed the memorable time we had and will have together that become a part of my life. It has been an honour to work and be with you all.

I wish to thank Dr. Kamyar for his encouragement and support, Mrs. Noroozi for her love and encouragement which keep me going and Mrs Jamileh for her technical advice on synthesis polymer polypyrole. I am highly grateful to my best and forever friends Shahedeh and her family, Hanieh from UM and her kind family, Saba from KBU, Narges from USM, Sanaz, Atefeh and Maryam for all the emotional support. God bless them.

I attribute the level of my master degree to all your supports. To you all I dedicate this thesis.

I certify that a Thesis Examination Committee has met on 3th December 2012 to conduct the final examination of ASMA FATEHI on her thesis entitled "FABRICATION AND CHARACTERIZATION OF VARISTOR-POLYMER COMPOSITE BASED ON ZINC OXIDE" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Uiversiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master Degree.

Members of the Thesis Examination Committee are as follows:

Prof.Dr.Mahiran Basri

Faculty of Science Universiti Putra Malaysia (Chairman)

Prof.Dr.Zulkarnain Zainal Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Dr.Tan Yen Ping

Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Prof.Madya Dr.Hazizan Md Akil

School of Materials & Mineral Resources Engineering Universiti Sains Malaysia (External Examiner)

Seow Heng Fong, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mansor Bin Ahmad @ Ayob, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Azmi Bin Zakaria, PhD Professor Faculty of Science Universiti Putra Malaysia (Member)

Shahrom Mahmud, PhD

Senior lecturer School of Physics Universiti Sains Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

	ABSTR ABSTF AKNOV APPRO DECLA LIST O LIST O LIST O	AACT RAK WLEDGEMENTS OVAL ARATION OF TABLES OF FIGURES OF ABBREVIATIONS	Page iii v vii x xii xvii xvii xix xxii
	СНАРТ	TER	
	1	Brief history	2
	1.1	1.1.1 Varistor polymer composites	2
	1.2	Problem statements	5
	1.3	Objectives	7
	2	LITERATURE REVIEW	
	2.1	Polycaprolactone	8
		2.1.1 Properties	9
		2.1.2 Application	11
	2.2	Varistor Powder	12
		2.2.1 Definition	12
		2.2.2 ZnO based varistor powder	13
		2.2.3 Applications	19
	2.3	Varistor-polymer composites	21
		2.3.1 Preparation polymer composite	21
		2.3.2 Polymer effects in polymer composites	22

24

3 MATERIALS AND METHODS

3.1	Chemicals				
3.2	Preparation of nano varistor powder				
3.3	Preparation of micro varistor powder				
3.4	Preparation of Bi ₂ O ₃ -MnO-Co ₃ O ₄ -doped ZnO micro powder				
3.5	Fabricatio	n of polymer composites	32		
	3.5.1	Fabrication of varistor –polymer nanocomposites	33		
	3.5.2	Fabrication of varistor- polymer microcomposites	35		
	3.5.3	Fabrication of Bi ₂ O ₃ -MnO-Co ₃ O ₄ - doped ZnO polymer microcomposites	36		
3.6	Character	ization of polymer composites	37		
	3.6 <mark>.1</mark>	X-ray Diffraction	37		
	3.6. <mark>2</mark>	FT-IR Chemical	39		
	3.6.3	Surface morphology	40		
	3.6.4	Energy Dispersive X-ray	41		
	3.6.5	Thermogravimetric Analysis	42		
	3.6.6	Differential Scanning Calorimetry	43		
	3.6.7	Current-Voltage Analysis	44		
	3.6.8	Transmission Electron Microscopy	45		

4 **RESULT AND DISCUSSION**

4.1	Preparation of varistor powder	47
4.2	Characterization of nano-sized varistor powder	47

	4.2.1	X-ray Diffraction	47
	4.2.2	FT-IR Chemical	50
	4.2.3	Surface morphology	51
	4.2.4	Transmission Electron Microscopy	54
4.3	Characteri	zation of varistor-polymer nanocomposite	54
	4.3.1	X-ray Diffraction	54
	4.3.2	FT-IR Chemical	57
	4.3.3	Thermogravimetric Analysis	58
	4.3.4	Differential Scanning Calorimetry	61
	4.3.5	Transmission Electron Microscopy	64
	4.3.6	Current-voltage Analysis	64
4.3.7	Summary		66
4.4	Characteri	zation of micro-sized varistor powder	67
	4 <mark>.4.1</mark>	X-ray Diffraction	67
	4. <mark>4.2</mark>	Thermogravimetric Analysis	70
4.5	Characteri	zation of varistor-polymer microcomposite	71
	4.5.1	X-ray Diffraction	71
	4.5.2	FT-IR Chemical	73
	4.5.3	Surface Morphology	74
	4.5.4	Thermogravimetric Analysis	75
	4.5.5	Differential Scanning Calorimetry	79
	4.5.6	Current-voltage Analysis	80
	4.5.7	Summary	81
4.6	Characteri	zation of Bi ₂ O ₃ -MnO-Co ₃ O ₄ -doped ZnO polymer	83
	microcom	posites	

	4.6.1 X-ray Diffraction	83
	4.6.2 Thermogravimetric Analysis	85
	4.6.3 Differential Scanning Calorimetry	87
	4.6.4 Current-Voltage Analysis	89
	4.6.5 Summary	92
5	CONCLUSION	93
5.1	Conclusions	93
5.2	Recommendation for further work	95
	REFERENCES	96
	PUBLICATION	110
	BIODATA OF STUDENT	112

C