

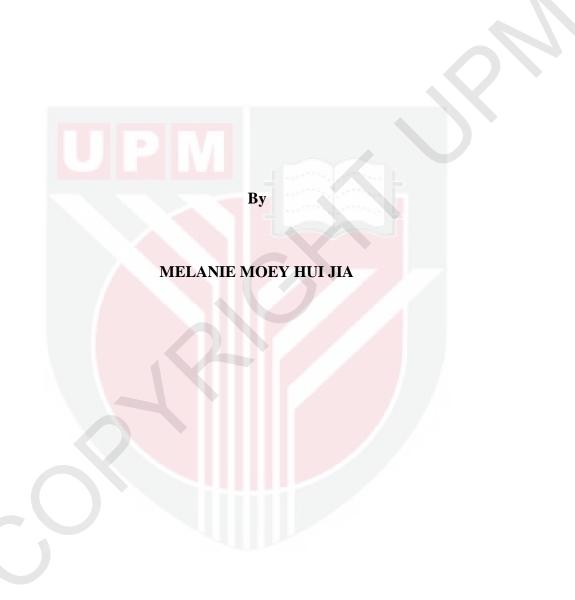
UNIVERSITI PUTRA MALAYSIA

PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE BY BISMUTH VANADATE PREPARED VIA POLYOL ROUTE

MELANIE MOEY HUI JIA

FS 2012 70

PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE BY BISMUTH VANADATE PREPARED VIA POLYOL ROUTE



MELANIE MOEY HUI JIA

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2012

PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE BY BISMUTH VANADATE PREPARED VIA POLYOL ROUTE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PHOTOCATALYTIC REMOVAL OF METHYLENE BLUE BY BISMUTH VANADATE PREPARED VIA POLYOL ROUTE

By

MELANIE MOEY HUI JIA

December 2012

Chair : Associate Professor Abdul Halim Abdullah, PhD

Faculty : Science

In this study, visible-light driven photocatalyst BiVO₄ was synthesized via polyol route. The effect of calcination temperature and duration on the characteristics of the resulting BiVO₄ catalyst was studied by performing Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), surface area measurement (BET method) and Diffuse Reflectance Spectroscopy (DRS). XRD analysis showed that monoclinic scheelite BiVO₄ can be obtained by calcining the sample at 450 °C for 3 hours. The BiVO₄ produced was olive-like in shape. The morphology of synthesized BiVO₄ retained the same upon increasing the calcination temperature and duration. However, its surface area decreased and showed increment in its particle size when calcination temperature and duration increased. Calcination temperature and duration did not affect the band gap energy of the BiVO₄ catalyst. The efficiency of resulted BiVO₄ as a visible-light driven photocatalyst was examined by removing Methylene Blue (MB) dye from aqueous solution. The effect of operational parameters such as catalyst dosage, initial concentration of dye and initial pH of solution on the removal of MB was also studied. The removal percentage of MB increased with increasing mass up to an optimum mass of 0.6003 g. Rate of reaction increased with increasing initial concentration of MB. Highest removal percentage of MB was also achieved at its natural state of pH. Further, experimental design methodology was used for response surface modelling and optimisation of MB removal. A multivariate experimental design was employed to investigate its interaction relationship among catalyst loading, initial concentration of dye and initial pH of solution. The maximum removal percentage of MB approached 67.21 % under optimised conditions of 0.57 g BiVO₄, 10.47 ppm of MB and at pH 4.7. A satisfactory goodness-of-fit was achieved between the predictive and the experimental results which indicates response surface methodology is a reliable tool for optimising removal percentage of MB.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYINGKIRAN METILENA BIRU DENGAN BISMUT VANADAT YANG DISEDIAKAN MELALUI KAEDAH POLIOL

Oleh

MELANIE MOEY HUI JIA

Disember 2012

Pengerusi : Profesor Madya Abdul Halim Abdullah, PhD

Fakulti

: Sains

Dalam kajian ini, fotomangkin cahaya tampak bismut vanadat BiVO₄ telah disintesis melalui kaedah poliol. Kesan suhu dan tempoh pengkalsinan terhadap ciri-ciri BiVO₄ yang dihasilkan dikaji dengan Analisis Termogravimetrik (TGA), Pembelauan Sinar-X (XRD), Pancaran Medan-Mikroskopi Pengimbasan Elektron (FE-SEM), Pengukuran Luas Permukaan (kaedah BET) dan Spektroskopi Penyerapan Pantulan (DRS). Daripada analisis XRD, bismut vanadat monoklinik telah diperolehi melalui pengkalsinan sampel pada suhu 450 °C selama 3 jam. BiVO₄ yang dihasilkan berbentuk buah zaitun. Bentuk BiVO₄ yang disintesis kekal sama apabila suhu dan tempoh pengkalsinan meningkat. Tetapi, luas permukaan menurun dan menunjukkan peningkatan dalam saiz zarah apabila suhu dan tempoh pengkalsinan meningkat. Suhu dan tempoh pengkalsinan tidak mempengaruhi tenaga jurang jalur mangkin BiVO₄. Kecekapan bismut vanadat yang dihasilkan sebagai fotomangkin cahaya tampak telah diuji dengan menyingkirkan Metilena Biru (MB) daripada larutan akueus. Kesan pelbagai parameter seperti dos mangkin, kepekatan pewarna dan pH awal larutan juga telah dikaji. Peratusan penyingkiran pewarna MB meningkat dengan peningkatan dos mangkin sehingga ke tahap optimum sebanyak 0.6003 g. Kadar tindak balas meningkat dengan kepekatan MB. Penyingkiran tertinggi MB tercapai pada pH semula jadi. Kaedah reka bentuk ujikaji telah digunakan untuk permodelan respons permukaan dan mengoptimumkan peratusan penyingkiran MB. Kepelbagaian variasi reka bentuk ujikaji juga digunakan untuk mengkaji hubungan interaksi di antara dos mangkin, kepekatan pewarna dan pH awal larutan terhadap peratusan penyingkiran pewarna. Peratusan penyingkiran MB mencapai 67.21 % pada keadaan optimum. Keputusan eksperimen sejajar dengan keputusan ramalan dan ini menunjukkan bahawa kaedah respons permukaan ialah suatu kaedah yang boleh dipercayai untuk mengoptimumkan peratusan penyingkiran MB.

ACKNOWLEDGEMENTS

First of all, I would like to take this opportunity to express my deepest gratitude and appreciation to Assoc. Prof. Dr. Abdul Halim Abdullah, for his assistance, effort and support in guiding me throughout my MSc research. His vast experience has enlighten me in this area of research. I would also like to express heartfelt thanks to my co-supervisor, Assoc. Prof. Dr. Nor Azah Yusof for giving me guidance, assistance and opinions to improve my research.

Sincere thanks are also extended to Madam Rusnani Amirudin for her favourable help in BET analysis. Besides that, I also would like to express my thank you to Madam Sarinawani Abdul Ghani for helping me operates field emission scanning electron microscopy (FE-SEM) analysis at Institute of Advanced Technology. My appreciation also goes to all my lab mates Eshraq, Yadollah, Lee Ek Giat, Huda, Fira, Jong Chin Yun and Aishah for their support, help and co-operation.

Special appreciation also goes to Lee, Kwong, Lok Hing, Li Hsia, Kim Lee, Hwei Voon, Sook Mey, Alexis and Phei Yi who gave me a lot of support and assistance whenever I need it.

Finally, I would like to express my gratitude to all those who had contributed to the success of my work especially to my mother and sister for their support and love that gave me the strength and determination to complete my research and thesis.

I certify that an Examination Committee met on 20 December 2012 to conduct the final examination of Melanie Moey Hui Jia on her Master of Science thesis entitled "Photocatalytic Removal of Methylene Blue by Bismuth Vanadate Prepared via Polyol Route" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Nor Azowa Ibrahim, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Zobir Hussein, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Irmawati Ramli, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Sugeng Triwahyono, PhD

Professor Faculty of Science Universiti Teknologi Malaysia (External Examiner)

> **SEOW HENG FONG, PhD** Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

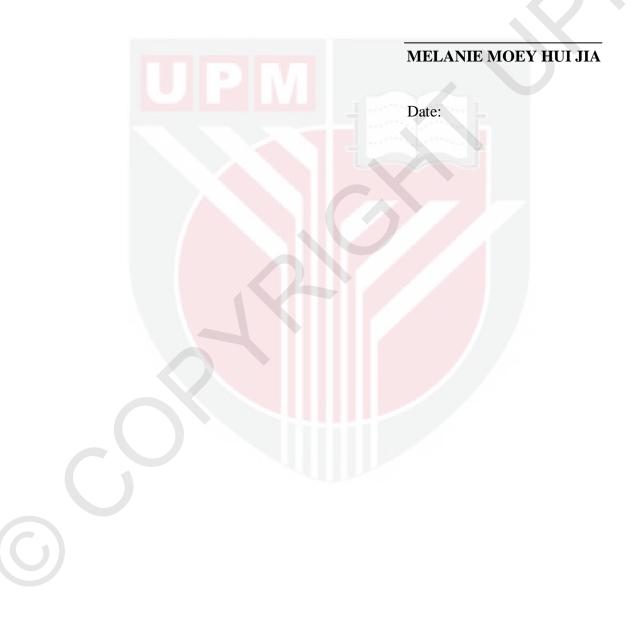
Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Halim Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Nor Azah Yusof, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Member)


BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvii

CHAPTER

1	INT	TRODUCTION		
	1.1	Advanced Oxidation Processes (AOPs)	2	
	1.2		4	
	1.3	Research Problem	5	
	1.4	Objectives	6	
2	LII	TERATURE REVIEW	7	
	2.1	Photocatalysis	7	
	2.2	Bismuth Vanadate (BiVO ₄) Photocatalyst	14	
	2.3	Removal of Organic Contaminants by BiVO ₄ Photocatalyst	20	
	2.4	Influence of Operational Parameters on Degradation of	22	
		Pollutants		
		2.4.1 Catalyst Loading	22	
		2.4.2 Pollutant Concentration	22	
		2.4.3 Initial pH of Solution	23	
	2.5	Response Surface Methodology (RSM)	24	
3	MA	TERIALS AND METHODOLOGY	27	
	3.1	Materials	27	
	3.2	Preparation of Bismuth Vandate Photocatalyst	27	
	3.3	Catalyst Characterisation	28	
		3.3.1 Thermal Stability	28	
		3.3.2 Phase Determination	28	
		3.3.3 Surface Morphology and Particle Size Determination	29	
		3.3.4 Surface Area Measurement	29	
		3.3.5 Band Gap Determination	30	
		3.3.6 Surface Electric Charge Determination	30	
	3.4	Photocatalytic Removal of Dye	30	

3.4.1	Preparation of Dye Solution	30
3.4.2	Construction of Standard Calibration Curve	31
3.4.3	General Dye Removal Procedure	31
	Effect of Catalyst Loading	33
3.4.5	Effect of Initial Dye Concentration	33
3.4.6	Effect of Initial pH of Solution	33
3.5 Resp	onse Surface Methodology (RSM)	33
RESULT	S AND DISCUSSION	36
	hesis of $BiVO_4$	36
•	acterisation of BiVO ₄ Catalyst	37
	Thermal Stability	37
	Phase Determination	38
4.2.3	Surface Morphology and Particle Size Determination	41
	Surface Area Measurement	48
4.2.5	Band Gap Determination	55
	ocatalytic Studies	60
	Preliminary Tests	60
	Background Experiments	66
4.3.3	Effect of Catalyst Loading	67
4.3.4	Effect of Initial Dye Concentration	69
4.3.5	Zero-order Kinetic Studies	71
4.3.6	First-order Kinetic Studies	72
4.3.7	Effect of Initial pH of Solution	75
	onse Surface Methodology (RSM)	78
4.4.1	Model Fitting and Statistical Analysis	78
4.4.2	Optimisation of Influencing Factors	85
SUMMA	RY, CONCLUSION AND RECOMMENDATIONS	86

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS 86 FOR FUTURE RESEARCH

REFERENCES	89
APPENDICES	99
BIODATA OF STUDENT	110
PUBLICATION	111