UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION AND CHARACTERIZATION OF OIL PALM EMPTY FRUIT BUNCH FERMENTATION FOR CELLULASE PRODUCTION BY
Botryosphaeria rhodina UPM3

EZYANA BINTI KAMAL BAHRIN

FBSB 2012 32
OPTIMIZATION AND CHARACTERIZATION OF OIL PALM EMPTY FRUIT BUNCH FERMENTATION FOR CELLULASE PRODUCTION BY Botryosphaeria rhodina UPM3

By

EZYANA BINTI KAMAL Bahrin

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirements for the degree of Doctor of Philosophy

November 2012
Dedicated to my beloved parents and brothers
Malaysia is well positioned as the major producers and exporters for palm oil industry worldwide. Hence, oil palm industry is currently producing the largest amount of biomass in Malaysia. In line with the Malaysian government approach to maximize the use of all by-products and waste streams, oil palm empty fruit bunch (OPEFB) is one of potential feedstock for industrial scale since it is abundant and available throughout the year. Integration of ‘Waste to Wealth’ concept is applicable to the palm oil industry in order reduce all production costs. Value added of oil palm solid waste into useful products such as organic acid, sugars, compost, biogas and enzymes may overcome the waste disposal problem in the mill.
Locally isolated fungus, namely *Botryosphaeria rhodina* UPM3 was found to be the best cellulase producing fungus among six fungi using rapid screening method. Solid state fermentation (SSF) is a strategic approach for bioconversion of lignocellulosic material by filamentous fungus. Results suggested that FPase (2.84 U/g) and CMCase (7.19 U/g) activities reached maximum production on day 3 of SSF. While β-glucosidase (0.09 U/g) indicated high activity on day 6 of SSF. Maximum FPase activity was obtained at the optimum levels of SSF parameters (fungal agar plug, 30°C incubation temperature, 20% initial moisture content, 5.0 g of substrate, initial pH of nutrient at 7.0 and without mixing). The OPEFB particle size of 0.42-0.60 mm contributed to the maximum activity of FPase and β-glucosidase whereas CMCase activity was maximized when 0.84-1.00 mm particle size was used in SSF. High cellulase production at low moisture content (20%) is a very rare condition for fungi cultured in SSF but *B. rhodina* UPM3 was capable to tolerate this condition and give a great advantage for large scale production.

Response surface method was applied in this study to improve the cellulase production from OPEFB by *B. rhodina* UPM3. An experimental design based on two-level factorial was employed to screen the significant environmental factors for cellulase production. From the analysis of variance (ANOVA), initial moisture content, amount of substrate and initial pH of nutrient supplied in the SSF system were significantly influenced the cellulase production. Then, the optimization of the variables was preceded in Central Composite Design (CCD). *B. rhodina* UPM3 exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was 24.32%, initial pH of nutrient was 5.96 and 3.98 g of substrate. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 16.83 U/g (5.16-fold). The model and design on the
optimization of the environmental factors in this study was dependable to predict the cellulase production by \textit{B. rhodina} UPM3.

The enzyme productions under optimized condition of SSF were as follows: FPase (18.48 U/g), CMCase (20.54 U/g), xylanase (22.00 U/g) and β-glucosidase (1.13 U/g). In addition, fermented OPEFB by \textit{B. rhodina} UPM3 was also analyzed and characterized to have a better understanding towards the macroscopic observation in SSF system. SEM micrographs showed a remarkable fungal growth cultivated on OPEFB for day 5 and 7. The craters of OPEFB provide a good anchorage for \textit{B. rhodina} UPM3 mycelia to attach on the substrate. Cellulose (7.78\%) and hemicellulose (22.6\%) composition were gradually declined throughout the fermentation period. However, lignin content resided in the OPEFB fiber was remaining unchanged until the end of the fermentation. This finding suggested that \textit{B. rhodina} UPM3 was unable to decompose lignin in a short period of time. Degradation of intra- and inter-linkage within lignocellulosic component in OPEFB indicated a vital finding of \textit{B. rhodina} UPM3 capability to decompose these materials during SSF. Overall, OPEFB is one of promising lignocellulosic feedstock and can be employed as substrate in SSF by locally isolated fungus, \textit{B. rhodina} UPM3 in order to produce cellulase enzymes.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGOPTIMUMAN DAN PENCIRIAN FERMENETASI TANDAN KOSONG KELAPA SAWIT UNTUK PENGHASILAN CELLULASE MENGGUNAKAN Botryosphaeria rhodina UPM3

Oleh

EZYANA BINTI KAMAL BAHREN

November 2012

Pengerusi : Profesor Suraini Abd Aziz, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Malaysia berkedudukan baik sebagai pengeluar dan pengekspot dalam industri kelapa sawit dunia. Maka, industri kelapa sawit adalah pengeluar biomas yang terbesar di Malaysia. Selaras dengan saranan kerajaan Malaysia untuk memaksimakan penggunaan kesemua hasil buangan dan aliran bahan buangan, tandan kosong kelapa sawit (TKKS) merupakan salah satu stok suapan yang berpotensi untuk skala industri kerana ia amat banyak dan boleh didapati sepanjang tahun. Penyejaguan konsep “Sisa ke Kekayaan” boleh diaplikasikan kepada industri kelapa sawit bagi mencapai pembuangan sisa sifar. Penambah baikkan bahan buangan pepejal kepada produk yang lebih berguna seperti asid organik, gula, kompos, biogas dan enzim dapat mengatasi masalah pembuangan sisa di kilang.
Kulat yang telah dipencilkan dari kawasan tempatan dan diberi nama *Botryosphaeria rhodina* UPM3 adalah kulat pengeluar cellulase yang terbaik daripada enam kulat menggunakan kaedah penyaringan pantas. Fermentasi fasa pepejal (FFP) merupakan pendekatan strategik untuk biopenukaran bahan lignosellulose dengan menggunakan kulat berfilamen. Keputusan mencadangkan FPase (2.84 U/g) dan CMCase (7.19 U/g) aktiviti mencapai pengeluaran maksimum pada hari ke-tiga inkubasi. Sementara itu, β-glucosidase (0.09 U/g) menunjukkan aktiviti yang tinggi pada hari ke-enam. Maksimum cellulase aktiviti diperolehi pada tahap optima parameter FFP (kepingan agar kulat, 30°C suhu inkubasi, 20% kandungan kelembapan, 5.0 g substrat pH awal nutrisi pada 7 dan tanpa pengadukan). Saiz partikel TKKS 0.42-0.60 mm menyumbang kepada maksimum aktiviti FPase dan β-glucosidase manakala CMCase aktiviti adalah maksima apabila menggunakan 0.84-1.00 mm saiz partikel dalam FFP. Cellulase yang tinggi pada kelembapan rendah (20%) adalah keadaan yang jarang ditemui bagi kulat yang dikulturkan dalam FFP tetapi *B. rhodina* UPM3 berupaya untuk berdaptasi dengan keadaan tersebut dan ini memberikan satu manfaat yang baik untuk pengeluaran berskala besar.

Kaedah permukaan tindakbalas (KPT) telah digunakan dalam kajian ini adalah untuk reka bentuk eksperimen berdasarkan dua aras faktorial telah diguna pakai untuk menyaring faktor sekitaran yang penting untuk penghasilan cellulase. Daripada analisis variasi (ANOVA), kandungan kelembapan awal, jumlah substrat dan pH nutrisi awal yang dibekalkan pada SSF sistem sangat mempengaruhi penghasilan cellulase. Kemudian, pengoptimasasi pembolehubah diteruskan dengan KPT berdasarkan rekaan komposit pusat (RKP). *B. rhodina* UPM3 menghasilkan nilai ramalan FPase (17.95 U/g)
yang tinggi pada keadaan optimum dengan kandungan kelembapan awal pada 24.32%, pH awal nutrisi pada 5.96 dan 3.98 g substrat. Optimasasi berstatistik dari eksperimen sebenar menunjukkan peningkatan yang ketara bagi penghasilan FPase daripada 3.26 kepada 16.83 U/g (5.16 kali ganda) Model dan reka bentuk pengoptimuman faktor sekitaran dalam kajian ini boleh dipercayai untuk menjangka penghasilan cellulase oleh *B. rhodina* UPM3.

Penghasilan enzim dalam keadaan optima adalah seperti berikut: FPase (18.48 U/g), CMCase (20.54 U/g), xylanase (22.00 U/g) dan β-glucosidase (1.13 U/g). Tambahan pula, TKKS yang telah difermentasi oleh *B. rhodina* UPM3 juga dianalisa untuk mendapatkan pemahaman yang lebih jelas tentang pemerhatian makroskopik dalam sistem SSF. Mikrograf Imbasan Mikroskop Elektron (IME) menunjukkan pertumbuhan kulat yang menonjol di atas TKKS pada hari ke-5 dan 7. Kawah yang terdapat pada TKKS memberikan tempat pautan yang baik bagi menempatkan *B. rhodina* UPM3 di atas substrat. Komposisi sellulose (7.78%) dan hemisellulose (22.6%) menurun beransur-ansur sepanjang fermentasi berlangsung. Walaubagaimanapun, kandungan lignin dalam TKKS tidak berubah sehingga penghujung fermentasi. Penemuan ini menunjukkan *B. rhodina* UPM3 tidak dapat meraikan lignin dalam masa yang singkat. Penguraian intra- dan inter rangkaian dalam komponen lignosellulose TKKS menandakan penemuan penting yang menunjukkan *B. rhodina* UPM3 dapat menguraikan semasa FFP. Secara keseluruhan, TKKS adalah salah satu stok suapan lignosellulose yang berpotensi dan boleh dijadikan substrat dalam FFP oleh kulat yang dipencilkan iaitu *B. rhodina* UPM3 untuk menghasilkan enzim cellulase.
ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, MOST GRACIOUS AND MERCIFUL

Alhamdulillah, I am very grateful to Allah S.W.T with His love and blessing without which this doctoral study would not successful and completed. I would like to express my most sincere thanks to my supervisor, Prof. Dr. Suraini Abd Aziz for her expert supervision, critical inputs, technical support, suggestions and advices rendered during this study. I also have so many reasons to thank Prof Dr Mohd Ali Hassan for giving me a great opportunity to improve myself and inspiring me to success.

I am greatly indebted to my supervisor committee members, Assoc. Prof. Dr. Umi Kalsom Md Shah (UPM), Assoc. Prof. Dr. Noorjahan Banu Mohamed Alitheen (UPM) and Assoc. Prof. Dr. Madiah Md. Salleh (UTM) for their valuable guidance, and suggestion throughout this study. A special thank goes to all members of Biomass Technology Center and Environmental Biotechnology Group, UPM for their guidance, encouragement and assistance in laboratory experiments. I also wished to thank my friends for their help, advice and motivation whenever I need them.

No words can be expressed to thank my beloved parent and family for always believing in me and encouraging me in pursuing my dream. Their encouragement, moral support and prayers are really instigated me to complete my study. Thanks a lot to all individual who have contributed in this study and may Allah blessed all of you.
I certify that a Thesis Examination Committee has met on 2 November 2012 to conduct the final examination of Ezyana binti Kamal Bahrin on her thesis entitled “Optimization and Characterization of Oil Palm Empty Fruit Bunch Fermentation for Cellulase Production using *Botryosphaeria rhodina* UPM3” in accordance with Universites andi Universiti College Act 1971 and the Constitution of the Universiti Putra [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Lai Oi Ming, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Norhafizah binti Abdullah, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Rosfarizan binti Mohamad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ashok Pandey, PhD
Professor
Regional Research Laboratory
India
(External Examiner)

SIEW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 February 2013
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement to the Doctor of Philosophy degree. The members of the Supervisory Committee were as follows:

Suraini Abd Aziz, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Noorjahan Banu Mohamed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Umi Kalsom Md Shah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Madihah Md Salleh, PhD
Associate Professor
Faculty of Biosciences and Bioengineering
Universiti Teknologi Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

EZYANA BINTI KAMAL BAHRIN
Date: 2 November 2012
TABLE OF CONTENTS

DEDICATION

ABSTRACT

ABSTRAK

ACKNOWLEDGEMENTS

APPROVAL

DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER

1 **INTRODUCTION** 1

2 **LITERATURE REVIEW** 4

2.1 Lignocellulosic Biomass 4

2.1.1 Type of Lignocellulosic biomass 4

2.2 Oil Palm Empty Fruit Bunch 8

2.2.1 Oil Palm Biomass Waste 8

2.2.2 Chemical and Physical Composition of OPEFB 12

2.2.3 Pretreatment of OPEFB 15

2.2.4 Current Utilization of OPEFB 18

2.2.4.1 OPEFB as Biofuel Feedstock 18

2.2.4.2 OPEFB as Biofertilizer Feedstock 19

2.2.4.3 OPEFB as Raw Material for Biocomposite 20

2.3 Cellulose Degrading Enzyme 21

2.3.1 Mechanism of Cellulase Reaction 22

2.3.1.1 Exogluclanase 24

2.3.1.2 Endoglucanase 25

2.3.1.3 β-D-glucosidase 26

2.3.2 Cellulase Producing Fungi 26

2.3.2.1 *Botryosphaeria* sp. 30

2.3.3 Cellulase Enzyme and Biomass Conversion 31

2.4 Solid State Fermentation (SSF) 32

2.4.1 The General Steps in SSF 32

2.4.2 Microorganism involved in SSF 34

2.4.3 Environmental and Biochemical Factors that Influence SSF Condition 36

2.4.3.1 Incubation Temperature 37

2.4.3.2 Moisture Content 38

2.4.3.3 pH of Nutrient 40

2.4.3.4 Amount of Substrate 41

2.4.3.5 Particle Size of Substrate 42

2.4.4 Advantages of SSF Over Submerged Fermentation 43
3 GENERAL MATERIALS AND METHODS
3.1 Materials
 3.1.1 Microorganism: Fungal Culture Preparation
 3.1.2 Substrate of OPEFB
3.2 Methods
 3.2.1 OPEFB Pretreatment
 3.2.2 Estimation of Moisture Content
 3.2.3 Inoculum Preparation
 3.2.4 Solid State Fermentation (SSF)
 3.2.5 Enzyme Extraction from SSF
 3.2.6 Determination of Enzyme Activities
 3.2.6.1 FPase Assay
 3.2.6.2 CMCse Assay
 3.2.6.3 β-glucosidase Assay
 3.2.7 Determination of Reducing Sugar
 3.2.8 Determination of Soluble Protein
 3.2.9 Statistical Analysis

4 INVESTIGATION OF PARAMETERS IN SSF CONDITION ON CELLULASE PRODUCTION BY B. rhodina UPM3
4.1 Introduction
4.2 Materials
 4.2.1 Microorganism
 4.2.2 OPEFB
4.3 Methods
 4.3.1 Lignocellulosic Content
 4.3.2 Rapid Screening of Cellulase Producing Fungi
 4.3.3 Cell Morphology Study
 4.3.3.1 Colony Observation on PDA Agar
 4.3.3.2 Morphological Characterization by Fungal Staining
 4.3.4 Identification of Isolated Fungus
 4.3.5 Solid State Fermentation
 4.3.6 Environmental Factors that Affect Cellulase Production
 4.3.6.1 Effects of Inoculum Type
 4.3.6.2 Effects of Temperature
 4.3.6.3 Effects of Initial Moisture Content
 4.3.6.4 Effects of Substrate Amount
 4.3.6.5 Effects of Particle Size
 4.3.6.6 Effects of Initial pH
 4.3.6.7 Effects of Mixing
 4.3.7 Enzyme Extraction
 4.3.8 Cellulase Assays
Control of Lignocellulosic Fermentation by B. rhodina UPM3

Results and Discussion

1. **Enzymatic Profile of B. rhodina UPM3 Under Optimized Condition**
2. **Fungal Growth and Reducing Sugar Production of B. rhodina UPM3**
3. **Protein Content**
4. **Morphological and Macroscopic Observation**
5. **Lignocellulosic Composition**
6. **Thermogravimetric Analysis**
7. **FTIR Spectra Analysis of Fermented OPEFB**

Conclusion

Summary

Conclusion

Recommendations for Future Studies

REFERENCES	178
APPENDICES	203
BIODATA OF STUDENT	217
LIST OF PUBLICATIONS	218