
Pertanika J. Sci. & Techno!. 2(2): 121-136 (1994)

ISSN: 0128-7680

© Universiti Pertanian Malaysia Press

A Technique for Transforming Rules in Deductive
Databases

Ali Mamat
Department ofComputer Science

Faculty ofScience and Environmental Studies
Universiti Pertanian Malaysia,

43400 UPM Serdang, Selangor, Malaysia.

Received 15 December 1992

ABSTRAK

Di dalam pangkalan data deduktif, kecekapan penilaian pertanyaan rekursif
dianggap sebagai satu matlamat penting. Suatu pendekatan untuk mencapai
matlamat ini ialah dengan menggunakan kaedah-kaedah yang menjelmakan
penanyaan asal kepada suatu set pertanyaan baru. Satu dari kaedah-kaedah
tersebut ialah "Set Magik". Dalam kaedah "Set Magik", pertanyaan yang
diungkapkan oleh petua dijelmakan kepada suatu set petua yang dipanggil
petua "magik". Kertas ini menunjukkan cara untuk melakukan penjelmaan
tersebut dengan menggunakan struktur data graf petua/matlamat. Kelebihan
teknik yang digunakan di sini ialah ianya sangat mudah dan jelas.

ABSTRACT

In deductive databases the efficiency of recursive query evaluation is considered
as an important goal. One approach to achieving this goal is to use methods
that transform the original query into a new set of queries. One such method
is magic sets. In the magic sets method, a query expressed by rules is transformed
into a set of rules called magic rules. This paper shows how to perform this
transformation by using a rule/goal graph data structure. The advantage of
the technique used here is that it is very simple and clear.

Keywords: deductive databases, recursive rules, magic sets, rule/goal graph,
logic, query

INTRODUCTION
The integration of logic programming and relational database technologies
has resulted in a new model for databases called deductive databases. A
deductive database consists of facts and rules and from the syntax point ofview
it is simply a Prolog program. It is claimed that deductive databases can
overcome some limitations of relational databases such as recursion.

Deductive database systems extend relational database management sys
tems, in particular, by allowing recursively defined queries to be expressed as
logical rules. Rules (clauses) are usually written in the form of

Ali Mamat

where A, B
1

, ..• , B
m

are atomic formulas, and m ;:::: O. Rules of this type
are called Hom clauses and the form in which they are written is known
as a clausal form. A rule has both a declarative and a procedural (or problem
solving) reading. The declarative reading of the above rule is that for all
values of the variables in the rule, A is true, if B

1
and B

2
and .,. and B

m

are true. The procedural reading is that for all values of the variables in
the rule, to solve A, B1 and B2 ,·· and B

m
have to be solved.

Suppose we have a relation (or predicate) manages (E, M), which means
an employee E is managed by a manager M. Let us define another predicate
head (E, H). The intention of this predicate is that H is E's manager,
or his/her manager's manager, and so On. Relation head can be expressed
by rules as follows:

r1 : head(E, M) f- manages(E, M)
r2 : head(E, M) f- manages(E, P), head(P, M)

Suppose that we are given the query that asks all the managers of ahmad.
With respect to the above rules, this query can how be expressed easily as

?head(ahmad, X)

So, a crucial point is to provide efficient methods for handling recursive
queries.

A procedure that answers queries on deductive databases must have
several important properties. First, it must return all the answers to a query
and then stop, These two properties are known as completeness and
termination, respectively. Second, the procedure must be efficient, i.e. it
must be able to use only necessary (relevant) facts during a query evaluation.
Another property is the complexity of the algorithm. While the procedure
is able to restrict the computation to the relevant facts, this restriction
should not lead to the more expensive procedure, for instance with an
exponential cost.

In the past ten years, various strategies have been proposed to handle
recursion in logic queries (Reither 1978; Chang 1981; McKay and Shapiro
1981; Henschen and Naqvi 1984; Ullman 1985; Kifer and Lozinskii 1986;
Vieille 1986; Beeri and Ramakrishnan 1987). An excellent survey of the
methods can be found in Bancilhon and Ramakrishnan (1986). In general,
these methods may be classified in two classes, top-down methods and bottom
up methods. Top-down methods, based in proof theory, start with a query
as the top goal and generate a proof tree using the axioms (rules) of the
database and an inference rule such as resolution to prove that the query
is a logical consequence of the database. Prolog is one such system that
uses resolution as an inference rule. These methods have proved to be
efficient. However, they suffer from a number of problems, including infinite
looping, possible non-termination, and they tend to generate answers to

122 Pertanika J. Sci. & Techno\. Va\. 2 No.2, 1994

A Technique for Tr;nsforming Rules in Deductive Databases

queries a tuple at a time. On the other hand, bottom-up methods, based
on model theory and fIxed point semantics, generate all solutions to a
query and do not go into an infInite loop. However, they tend to be inefficient.
The reason is that bottom-up methods do not make use of ground terms
(variable free terms) in the query in the same way that tofHlown methods
do. As a consequence, many irrelevant tuples are generated during a
computation. Techniques are thus needed to restrict the generation of
irrelevant tuples.

There are two basic approaches which have been pursued to obtain
a more direct computation. The fIrst approach seeks to modify the standard
bottom-up computation and achieve a more run-oriented solution (Kifer
and Lozinskii 1986; Vieille 1986). The second approach seeks to perform
a compile-time transformation of the database, based on the given query,
into an equivalent form which enables a standard bottom-up computation
to focus on relevant tuples. One example of this approach is the magic
sets method (Bancilhon et al. 1986).

The magic sets method is an algorithm for rewriting logical rules so
as to cut down the number of irrelevant facts during bottom-up evaluation.
Special sets of values (tuples), called magic sets, are computed so thay they
can be used to restrict the computation to the relevant facts only. These
sets are determined by propagatingbindings in the query tofHlown evaluation.
Thus, in the magic sets method one can fInd the positive features of both
top-down and bottom-up computation.

The magic sets method consists of the following steps:

i) an analysis of the binding propagation behaviour during the top
down phase,

ii) the generation of magic rules from the original one by using the
results obtained from (i), and

iii) the execution of magic rules.

The analysis of the binding propagation can be accomplished by using
a tool called a rule/goal (Ullman 1985). In this paper we show how to
generate magic rules by using the rule/goal graph. The technique is very
simple and clear. The transformation algorithm which produces the same
magic rules as our technique was given in Ullman (1989), but that algorithm
did not make use of the rule/goal graph. These are other algorithms, such
as the one in Sacca and Zaniolo (1987), which result in equivalent magic
rules but those algorithms are not very clear.

CONCEPT AND TERMINOLOGY
A deductive database (DDB) D consists offacts (extensional axioms), deduc
tive rules (intensional axioms), integrity constraints, and queries. We use
Prolog-like notation for the representation of DDB.

Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994 123

Ali Marnat

A literal is an atomic formula or the negation of an atomic formula. An
atomic formula has the form p (l1.,"" tn) where p is a predicate symbol ofarity
n, and each ~ is either a constant, a variable or a function. The atomic formula
p(t

l
, ..., tn) represents a relation between terms t

l
, ..., tn.

A clause is a disjunction of literals which has the form

where each A" and Bj represent an atomic formula. (The symbols, V, /\'
and ~ denote or, and, and not respectively). Clauses can be written in an
equivalent form using implication, and in the Prolog style we have

All variables in a clause are assumed to be universally quantified. Such a
clause is also called a deductive rule, the head of the rule is~V ... V An'
and the body of the rule is BI /\ ... /\ B

m
• A Hom clause is a clause where

the head of the rule is restricted to at most one positive literal.
In this paper we are concerned with a DDB as a set of definite Hom

clauses, that is there is no negative literal in the body of deductive rules.
Furthermore, literals have no functions. This class of deductive databases
is known as a datalog database. A goal clause has a null head, and a clause
with a null body is an assertion. An assertion is also called a unit clause.
A unit clause which contains only ground terms (variable free terms) is
called a ground unit clause or fact. A query is a goal clause.

A clause is called recursive if the same predicate symbol appears in
both the head and the body. A relation R may be defined recursively by
a recursive clause or by mutual recursion where R is defined (in the head)
in terms of S in the body, and in turn S itself is defined in terms of R.

Integrity constraints, expressed as rules, represent restrictions that the
database must satisfy, play an important role in checking update validity.
They are, however, not needed in answering queries over the database.

Certain predicates are defined by the rules, that is they appear as the
head of one or more rules; these are called IDB (intensional database)
predicates. Other predicates are not defined by rules, but by a stored relation,
and they are called EDB (extensional database) predicates. An EDB predicate
can only appear in subgoals; an IDB predicate can appear in both heads
and subgoals. We assume that IDB and EDB are mutually exclusive.

RULE/GOAL GRAPH
Before going further, it is convenient to introduce the concept of sideways
information passing (Beeri and Ramakrishnan 1987). Informally, a sideways
information passing describes how bindings (constants assigned to variables)
passed to a rule's head are used to evaluate the predicates in the rule's

124 Pertanika J. Sci. & Technol. Vol. 2 No.2, 1994

A Technique for Transforming Rules in Deductive Databases

body. When a sideways infonnation passing is performed, it appears that
starting from a predicate ~e with variables bound in certain positions,
we reach the same predicate'name with variables bound in other positions.
It is thus necessary to distinguish which argument is bound and which is free
in a predicate. This leads to the concept of adornment (Ullman 1985).

An adornment or a binding pattern for an n-ary predicate p is a string
s of length n of b's and fs, where b stands for bound and f stands for
free. The adornment indicates which arguments of p are bound and which
are not. If the ith symbol of the adornment is b, then the ith argument
if p is bound. If the ith symbol of the adornment is f, then the ith argument
of p is free. For a predicate p with an adornment s, we write p' to denote
the adorned predicate for p.

A rule adornment indicates which variables are bound at a point and
which are free. The algorithm to decide when a variable becomes bound
in a rule

follows from the sideways information passing described earlier.

1. A variable appearing in a bound argument of the rule head is bound
before processing any subgoals.

2. A variable is bound after processing subgoal Gi if it was bound before
processing G

i
or if it appears anywhere in Gi . A rule adornment is

denoted by a superscript of the form [X!,"" Xml YI , ... , Yn], where the
X's are bound and the Y's are free. We write r\~IB] to denote that [AlB]
is a rule adornment for rule ri after the consideration of the jth subgoal

of rio

The binding patterns of predicates in a set of rules and a query can
be represented by a finite structure called a rule/goal graph. The concept
of a rule/goal graph originally appeared in Ullman (1985) and the rule/
goal graph we used follows the one found in Ullman (1989). The rule/
goal graph has two types of nodes, namely rule nodes and goal nodes.
Goal nodes represent rule adornments.

Let p be the predicate of the query and a be the adornment of that
predicate. The process of creating the rule/goal graph starts with the node
p". From this node, we expand the graph according to the rules given
below. As we expand, we add goal nodes and rule nodes. For rule r" we
use r , with an adornment, to represent rule r before considering any

5.0 5

subgoals, and r,.i' with an adornment, to represent rule r, after considering
its first i subgoals. The steps to expand the rule/goal graph are as follows
(U'llman 1989):

Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994 125

Ali Marnat

1. A goal node with an EDB predicate has no successors.
2. A goal node that is an IDB predicate p with an adornment a has successors

corresponding to all the rules with head predicate p. If r. is such
a rule, then plX has successor

where Xl' ..., X
n
are all the variables that appear in a argument of(s head

that is bound according to adornment a, and Yt , ..., Y
m

are the other
variables of rs'

3. Consider a rule node r~.f"···'x.IY" ..., YmJ, i ~ 0, and suppose q (tl""'~) is
the i + 1st subgoal of r..

a) One successor of this rule node is a goal node qP; p is the adornment
that makes the jth argument of qbound if all variables appearing
in t are among the bound variables of the rule so far. Adornment
p ritakes the jth argument free otherwise.

b) If i + 1 is less than the number of subgoals in rule r. (i.e. q(~, ...,~) is
not the last subgoal of r), then node

r[~I"'" XnIY,, YmJ
'.1

has a second successor, the node

r[X', Xn ' VI' .. ·• Vj IV, ...,VhJ
s,i+l

where UI, ...,u. are those variables among YI,..., Y
m

that appear in
q(tl,..., ~), and VI"'" Vh are the remaining variables of the Y's.

Let us consider the same generation rules of Fig. 1.

rO : sg (X, X) f- person (X).

rl : sg (X, Y) f- par (X, XP), sg (XP, YP), (Y, YP).

Fig. 1. Rules for the same generation

Predicates person and par are EDB predicates and predicate sg is the
only IDB predicate. The intention ofpredicate person (X) is that an individual
X is a person. Par (X, Y) means Y is the parent of X. The intended meaning
of sg (X, Y) is that X and Yare of the same generation. Rule rO says
that every person is of the same generation as her/himself. Rule rl says
that two individuals are of the same generation if their parents are.

126 Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994

A Technique for Transforming Rules in Deductive Databases

Suppose the query is of the fonn sgbf, that is, given an individual a find all
persons who are ofthe same generation as a. The rule/goal graph constructed
by using this query and following the given order ofsubgoals in the second rule
is shown in Fig. 2.

bl
___-__'59

[XI] [XIY,XP,YPl
r r

~
0.0 1.0

/ /b bl [X,XPIY,YPIperson par r
1.1

~

/
par fb

[X,XP,YPIY]
r
1.2

Fig. 2. The rule/goal graph for the same-generation rules

The root has adorned predicate sgbf, which is the predicate in the query
with its adornment. The root has two children corresponding to two rules
for sg. For each child, the binding on the first argument of sg provides
a binding for variable X only. The binding on variable X in rule ro causes
the argument of the subgoal person (X) abound, as shown by the goal node
personb, the child node of r[XII. 0.0

The other child of the root is

r[XIY, XP, ypJ
1.0

This node has child parbf, representing the first subgoal of r l . The
adornment is bf, because the binding on X provides a binding for the
first argument of par (X, XP), but not for the second. The other child
that the node has is

[X, XP \Y, ypJ
rl.l

for which the variable XP becomes bound after considering the first subgoal.
This node in turn has two children sgbf and

[X, XP, YPIY]
r1.2

Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994 127

Ali Mamat

The former is the same as the root node, thus a new node is not needed.
The latter has one and only child part', representing the last subgoal of rl'
namely par(Y, YP). The first argument of this subgoal is free, while the second
one is bound. Since no more nodes can be added, the construction of the
rule/goal graph is complete.

THE TRANSFORMATION OF RULES USING A
RULE/GOAL GRAPH

In the transformation of rules using magic sets, two new classes of predicates
are introduced. These are called magic predicates and supplementary
predicates. These predicates compute values that are passed from one
predicate to another in the original rules, according to the particular order
of execution of the subgoals. The magic predicate for a predicate p, denoted
by m.p, has arguments corresponding to the bound arguments of p. The
aim of the magic predicates is to compute the sets of bindings that bound
arguments of derived predicate (IDB predicate) would gain during a top
down computation. The sets of values computed by magic predicates are
called magic sets.

For a rule with ksubgoals (predicates), we create supplementarypredicates
SO'",, Sk - 1. A supplementary predicate has some of the variables of the
rule as its arguments. For instance, Si has arguments corresponding to those
variables that are both bound and relevant after considering the first i
subgoals. Variables are bound either by appearing in a bound argument
of the head or by appearing in one of the first i subgoals. Variables are
relevant if they appear either in the head or in the (i + 1)st or a subsequent
subgoal. The supplementary predicate Sj is used to pass the bindings
obtained so far, to the (i + l)st subgoal.

Magic rules resulting from the magic sets algorithm of Ullman (1989)
can be classified into five groups:

i) Rules for the magic predicates,
ii) Rules for the zeroth supplementary predicates,

iii) Rules for the other supplementary predicates,
iv) Rules for IDB predicates, and
v) The initialisation rule.

We now describe how to generate the al;>ove rules by using a rule/
goal graph.

A rule/graph can be seen as a tree if we omit all arcs linking rule
nodes with goal nodes which appear before the rule nodes, during the
construction of the rule/goal graph. A tree can be traversed without going
into an infinite loop. We want to show that by visiting each node of the
tree using a depth-first search, we can generate all magic rules. Our first
task is to remove all the arcs in the rule/goal graph that give rise to loops.

128 Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994

A Technique for Transforming Rules in Deductive Databases

Suppose there is a link between rule node P and goal node Q that
appears at a level higher than the level of P. To remove this link, we create
a new goal node, say Q, with the same adorned predicate as Q, and make
Q' a child node to P. Node Q' does not have any successors. The
corresponding tree of a rule/goal graph of Fig.2 is shown in Fig.3.

bf
S9

/
person

[XI]
r

0.0 /,~"F~
bf [X,xPlY,YP]

par r/1.1 ~

S9 bf [X,XP,YPIYj
r/1.2

par fb

Fig.3. Rule/goal graph for the same-generation rules with the loop rerrwved

In the following, when we refer to a tree we mean a rule/goal graph
which has been transformed into a tree.

The next step is to traverse the tree starting from the root. The root
is the node which was first created. As we traverse the tree, each time
we reach a node, rules will be generated according to that node. For our
purpose, nodes of the tree can also be classified into five groups, each
of which is associated with a particular type of rule as follows:

a) The root - the initialisation rule,
b) Goal nodes with IDB predicates - rules for magic predicates,
c) Rule nodes r

LO
- rules for zero supplementary predicates,

d) Rule nodes r jj wherej:t- 0 - rules for other supplementary predicates,
and

e) Rule nodes with only one successor, i.e. their goal-node child - rules
for IDB predicates.

These groups are not necessarily disjoint groups. A node might belong
to more than one group. For example, node ro.o of Fig.3 belongs to group
c and e. Before we go further, let us see how we can determine the arguments
for the supplementary predicates.

A supplementary predicate associated to jth subgoal of rule r i is denoted
by supiJ. The arguments of supiJ are variables of rule r j that are both

Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994 129

Ali Mamat

bound and relevant after considering the first j subgoals. Recall that variables
are bound either by appearing in a bound argument of the head or by
appearing in one of the firstj subgoals. Variables are relevant if they appear
either in the head or in the G+ 1)st or a subsequent subgoal.

Let
Vb be a set of bound variables after considering the first j subgoals
V be relevant variables
V: be variables in the head
V be variables occurring in G+ l)st subgoal and the subsequentsubgoals.
The supplementary variable Vs for predicate SUPiJ is thus
V

s
= Vb n Vr = Vb n (Vh n Vq). It can be seen that the arguments

for the supplementary predicate suPi.O are the bound variables in the head
of rule rr

Assume that the query for the rules of Fig.1 is ?sg(a, X). Let
us now traverse the tree of Fig. 3 in a depth-first manner, and generate
rules according to the node that has been reached.

1. The root
The first node that we reach is the root, i.e. the goal node sgbf. We create
a magic predicate m.sg, where sg is the predicate in the node. The arguments
of the predicate are the bound arguments of the query. We thus have
the initialisation rule

m.sg(a).

2. Rule node ro.o
We create the rule for zeroth supplementary predicate supO.O. The arguments
of this predicate are bound variables of the node, that is X. The body
of the rule is m.sg(X), where sg is the head predicate of ro and X is the
bound arguments of the head. We thus have rule

supO.O(X) (---- m.sg(X).

The next node to be visited is the goal node pe:rsonb
• Because it contains

EDB predicate, no rules are created for this node. We then go back to
the node ro.o and look for the right node. It happens that no such node
exists, and so we create one of the rules for IDB predicates:

sg(X,X) (---- supO.O(X), person(X).

The head of the resulting rule is the head of rule rOo The first subgoal
in the body is the supplementary predicate corresponding to the current
node, and the second subgoal is the last subgoal of rule roo

We have finished visiting one branch of the root node. We next traverse
the right branch of the root.

130 Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994

A Technique for Transforming Rules in Deductive Databases

3. Rule node rI.o
The way we create the zeroth supplementary rule for this node is the same
as for rule node ro.o· But here the rule involved is r

l
. Thus,

supl.O(X) f- m.sg(X)

The subsequent node to be visited is the goal node parbf
• As explained

before, nothing will be done for EDB predicate. A traverse continues through
the right child of node rl.o'

4. Rule node rl.l
This is the first rule node corresponding to other (non-zeroth) supplementary
predicates. Before constructing a rule for this node, let us determine the
arguments for the supplementary predicate. From the rule node, we know
that Vb = (X, XP). Searching through the head of rule r

l
we obtain V

h

= (X, Y), and through the second subgoal and the rest we get V = (XP,
YP, Y). Therefore, the supplementary variables V" are given by q

V = (X, XP) n «X, Y) u (XP, YP, Y)) = (X, XP).,

The rule for this node is

supl.l(X, XP) f- supl.O(X), par(X, XP)

The predicate supl.O(X) corresponds to the parent node (node rl.o)
of the node under consideration, and par(X, XP) is the first subgoal of
rule r

l
. In general, for a predicate supi. j, the second subgoal in the body

of the rule defining supiJ is the jth subgoal of the rule rr We next consider
the left child of node rl.l'

5. Subgoal node sgbf
This is the only IDB goal node in the tree. For this node we generate
a rule defining magic predicate m.sg. The arguments of this predicate are
the bound arguments (determined by adornment bf) of subgoal sg, i.e.
the second subgoal of the rule r l . This subgoal can be identified by the
index stored in the parent node (i.e. node rl.l)' The body of the rule
is the supplementary predicate corresponding to the parent node (rl.l),
defined earlier. Thus, we have the following rule

m.sg(XP) f- supl.l (X, XP).

6. Rule node rl.2
Following the right branch of rule node ru gives us the last rule node,
i.e. node r1.

2
' Like its parent node, we create for this node a rule defining

Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994 131

Ali Mamat

other supplementary predicates. Variables constituting the argument for
the predicates are given by

V
s

= (X, XP, YP) (l ((X, Y) u (P, Y))

The resulting rule is

(X, YP).

supl.2(X, YP) f- sup1.1(X, XP), sg(XP, YP).

Finally, we also generate a rule defining IDB predicate sg that appears
in the head of r l . The rule is

sg(X, y) f- supl.2 (X, YP), par(Y, YP).

For convenience, we rewrite all magic rules that have been generated
as follows:

m.sg(a)
m.sg(X) f- supl.1(X, XP)
supO.O(X) f- m.sg(X)
supl.O(X) f- m.sg(X)
supl.1(X, XP) f- supl.O(X) , par(X, XP)
supl.2 (X, YP) f- supl.1 (X, XP), sg(XP, YP)
sg(X, X) f- supO.O(X), person(X)
sg(X, y) f- supl.2 (X, YP), par(Y, YP)

We have thus seen that all magic rules that should be resulted by the
magic sets' transformation algorithm of Ullman (1989) can be generated
based on a rule/goal graph. An algorithm in the form of pseudocode for
generating magic rules by using the rule/goal graph is given in an appendix.

THE CORRECTNESS AND PERFORMANCE OF THE
ALGORITHM

We want to show that our algorithm and Ullman's magic sets' algorithm
(Ullman 1989) are equivalent in the sense that both algorithms produce
the same magic rules as the results of converting the original database
rules. To do so, we have to prove that our algorithm produces only the
same magic rules as Ullman's algorithm, and that every magic rule produced
by the latter is produced by the former. As mentioned above, magic rules
resulting from Ullman's algorithm can be classified into five groups as follows:

132

(i)
(ii)

(iii)

Rules for magic predicates
Rules for zeroth supplementary predicates
Rules for other supplementary predicates

Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994

A Technique for Transfonning Rules in Deductive Databases

(iv) Rules for IDB predicates
(v) An initialisation rule

We start with an initialisation rule. There is only one initialisation rule,
and this rule is created when the root of the rule/goal graph is processed.
Each rule of group (i), rules for magic predicates, is created for each IDB
predicate appearing in the body of the rule. Our algorithm creates this
rule when it process the IDB goal node of the rule/goal graph. Rules of
group (ii) contain a predicate of the form supi.O (i = 0, 1, ..., n - 1 where
n is the number of database rules) in their heads. In the rule/goal graph,
we have rule nodes of the form r1.O' By creating a rule for each node rj.O(i
= 0, 1, ...n - 1) we obtain all the rules of group (ii). Similarly, rules
of group (iii)contain predicate supi.j (i - O,1."n - 1 and j = 1,2,oo.,k
- 1 where n is as before and k is the number of subgoals in the rule
r.) in the head. These rules can be generated based on rule nodes r.. of
J' Y
the rule/goal graph. Finally, rules of group (iv), namely modified original
rules, can be obtained by creating one rule for each rule node rjk -1' i
= 0, 1,. 00' n - 1 where nand k are as before. .

We have thus demonstrated that all the rules of groups (i) to (v) can
be created by our algorithm based on the traversal of the rule/goal graph.
The next step is to demonstrate that the algorithm creates only the same
magic rules as the algorithm of Ullman. Since the involved nodes of the
rule/goal graph correspond to particular rules of groups (i) to (v) above,
therefore no other rules can be generated. We have thus showed the
equivalence of the two algorithms in terms of their functionality. The details
of each rule are omitted as they are obvious.

Besides correctness, another important aspect of an algorithm is its
performance. As stated above, converting (or rewriting) rules constitutes
only one of three phases in the magic sets method. It is clear that the
time taken to convert rules is very short compared to the time required
to execute the magic rules. Thus, the performance of the algorithm for
converting rules is not a major concern. However, to complete a story we
will sketch it in the following. It is also useful to mention that the complexity
analysis of the entire magic sets algorithm is not a simple task, and could
easily become a subject of a separate paper.

Since our algorithm is based on the traversal of a binary tree (converted
rule/goal graph), it is easy to show that the time complexity of the algorithm
is O(n log n), where n is the number of nodes in the tree. We have seen
that the number of nodes depends on the number of subgoals in database
rules. Therefore, n is proportional to the number of subgoals.

CONCLUSION
We have shown how to construct a rule/goal graph for a given query and
a set of rules. We have also shown the technique to generate magic rules

Pertanika J. Sci. & Techno!. Va!. 2 No.2, 1994 133

Ali Mamat

by using the resulting rule/goal graph. The analysis of the correctness and
performance ofour algorithm for generating magic rules has been presented.
An interesting characteristic of the algorithm is that it is simple and clear
and yet it manages to derive all and correct rules that are required to
answer the query.

Another important characteristic of the algorithm is its time complexity.
It has been shown that the time complexity of the algorithm is O(nlogn),
which is an acceptable time.

REFERENCES
BANCILHON, F. and R. RAMAKRiSHNAN. 1986. An amateur's introduction to recursive query

processing strategies. In ACM SIGMOD International Conference on Management ofData,
pp.I6-52. New York: ACM.

BANCILHON, F., D. MAIER, Y. SAGIV and J. D. ULLMAN. 1986. Magic sets and other strange
ways to implement logic programs. In Proceedings Fifth ACM Symposium on Principles
of Database Systems, pp.I-15. New York: ACM.

BEERI, C. and R. RAMAKRISHNAN. 1987. On the power of magic. In Proceedings Sixth ACM
Symposium on Principles of Database Systems, pp.269-283. New York: ACM.

CHANG, C. L. 1981. On the evaluation of queries containing derived relations in relational
databases. In Advances in Databases Theory, ed. H. Gallaire,J. Minker andJ.-M. Nicolas.
Vol. I, pp. 235-260. New York: Plenum Press.

HENSCHEN, LJ. and S.A. NAQVI. 1984. On compiling queries in first-order databases.
Journal of ACM 31(1): 47-85.

KIFER, M. and E.L. LOZINSKI!. 1986. A framework for an efficient implementation of
deductive database systems. In Proceedings of the Sixth Advanced Database Symposium,
pp. 109-116.

McKAY, D. P. and S. C. SHAPIRO. 1981. Using active connection graphs for reasoning
with recursive rules. In International Joint Conference on Artificial Intelligence, pp.368
374.

REITHER, R.1978. On closed world databases. In Logic and Databases, ed. H. Gallaire and
J. Minker, pp. 55-76. New York: Plenum.

SACCA, D. and C. ZANtOLO. 1987. Implementation of recursive queries for a data language
based on pure Hom logic. In Proceedings Fourth International Conference on Logic
Programming, pp.104-135. Cambridge Massachusetts: MIT Press.

ULLMAN, J. D. 1985. Implementation of logical query languages for databases. ACM
Transactions on Database Systems 10(3): 289-321.

ULLMAN, J. D. 1989. Principles of Database and Knowledge-Base Systems, Vol.lI. Computer
Science Press.

134 Pertanika J. Sci. & Techno!. Vo!. 2 No.2, 1994

A Technique for Transforming Rules in Deductive Databases

VIEILLE, L. 1986. Recursive axioms in deductive databases. The query/ subquery approach.
In Proceedings First International Conference on Expert Database Systems. ppJ 79-194.

APPENDIX

Implementation
This section describes the routines for transforming a set of rules into magic
rules based on a traversal of a rule/goal graph. During the traversal of
the rule/goal graph, we come across two types of nodes, i.e. goal nodes
and rule nodes. To manipulate these nodes two routines, namely
TraverseSubgoal and ProcessRuleNode, are needed. The former processes
goal nodes and the latter processes rule nodes. However, the root node
needs a special treatment, although it is one of the goal nodes. The routine
that accesses and processes the root constitutes the top-level procedure
called TraverseGraph. This procedure is presented as follows:

procedure TraverseGraph (root, query);
BEGIN

/* generate an initialisation rule based on the root */
print("m.", root ipredicate);
/* get bound arguments of the query */
GetBoundArg(root i adorn, query);
/* access to top-level rule nodes linked to the root */
entry : = root i ptr;
WHILE entry < > null DO
BEGIN

ProcessRuleNode (entry i ruleptr, root i adorn, null);
entry : = entry i next;

END
END

We assume that a record representing a goal node includes predicate,
adorn, and ptr (pointer) fields. GetBoundArg is a function (routine) to
obtain bound arguments of predicate in the query.

ProcessRuleNode
Given a rule node p, an adornment adorn for a predicate stored in a goal
from which the node p comes out, and a parent (rule) node parent (exists
if the node to be processed has an index i,j,j>O), the procedure ProcessRuleNode
(p, adorn, parent) generates a rule defining a supplementary predicate SUPiJ'

where iJ is an index associated with node p. The following algorithm presented
in the form pseudocode defines ProcessRuleNode (p, adorn, parent).

Pertanika J. Sci. & Technol. Vol. 2 0.2, 1994 135

A Technique for Transforming R.ules in Deductive Databases

BEGIN
generate the head of a rule defining sUPij;

IF j = 0 THEN
generate the rule's body for supi.O;

ELSE
generate the rule's body for supij, j>O;

IF P i golptr < > null THEN
TraverseSubgoal (p i golptr,p);

IF p i rulptr < > null THEN
ProcessRuleNode(p iarulptr,null,p);

ELSE
generate a rule for an IDB predicate;

END
The procedure will be called from two places:

a) inside the procedure TraverseSubgoal, described later, and
b) inside the procedure ProcessRuleNode itself.

The call in (a) generates a rule for the zeroth supplementary predicate,
and in this case the adornment adorn is required to determine the bound
arguments of the rule head. The call in (b) generates a rule for the other
supplementary predicate, and for this the above adorn is irrelevant.

TraverseSubgoal
This function is relevant only for a goal node repreenting an IDB predicate,
for which we generate a rule defining a magic predicate. Mter generating
such a rule, we then access and process all other nodes emanating from
this goal node. We present TraverseSubgoal (p,parent), where p and parent
represent the goal node and its parent (rule) node respectively, in the
form of pseudocode as follows:

BEGIN
IF P contains an IDB predicate THEN

generate a magic rule;
/* access to top-level rule nodes */
entry: = entry iptr;
WHILE entry < > null DO

ProcessRuleNode(entry irulptr, p iadorn, null);
entry : = entry i next;

END
END

136 Pertanika J. Sci. & Techno!. Vol. 2 No.2, 1994

