UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF POLY(HYDROXYBUTYRATE-CO-HYDROXYVALERATE)/CLAY NANOCOMPOSITES

MOHD FIRDAUS BIN MOHD ANUAR

FS 2012 7
PREPARATION AND CHARACTERIZATION OF POLY(HYDROXYBUTYRATE-CO-HYDROXYVALERATE)/CLAY NANOCOMPOSITES

MOHD FIRDAUS BIN MOHD ANUAR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
PREPARATION AND CHARACTERIZATION OF POLY(HYDROXYBUTYRATE-CO-HYDROXYVALERATE)/CLAY NANOCOMPOSITES

By

MOHD FIRDAUS BIN MOHD ANUAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

August 2012
Abstract of Thesis Presented To The Senate Of Universiti Putra Malaysia In Fulfillment of The Requirement For The Degree of Master of Science

PREPARATION AND CHARACTERIZATION OF POLY(HYDROXYBUTYRATE-CO-HYDROXYVALERATE)/CLAY NANOCOMPOSITES

By

MOHD FIRDAUS BIN MOHD ANUAR

August 2012

Chairman : Nor Azowa Ibrahim, PhD
Faculty : Science

In this study, natural clay (Na-MMT) and synthetic layered double hydroxide (LDH) were modified to produce organo-modified clay. LDH was prepared via co-precipitation method by adding dropwise a solution of NaOH (1M) into a solution of Mg(NO$_3$)$_2$·6H$_2$O and Al(NO$_3$)$_3$·9H$_2$O. Both Na-MMT and LDH were modified via ion exchange technique using octadecylamine (ODA) and sodium stearate respectively to perform organo-modified clays. The modification was carried out by stirring the clay in an aqueous solution of a mixture of Na-MMT and ODA, and LDH and sodium stearate. The modified clays were then used in preparation of poly(hydroxybutyrate-co-hydroxyvalerate), PHBV nanocomposites. The intercalation of the modifier in the clays layer were characterized by X-ray Diffraction (XRD) Analysis and Fourier Transform Infrared (FTIR) Spectroscopy.
PHBV/clay nanocomposites were prepared via solution casting technique. The clays were added into chloroform solution of PHBV based on a fixed amount of clay loading. The amount of clays added were 0.25, 0.5, and 1.0 wt% for all type of clays. For further dispersion of clay, the mixture of PHBV/clay solution was sonicated for 30 min. The viscous solutions were casted in a glass petri dish and dried in the solvent atmosphere to obtain the nanocomposite films.

The effect of clay loading on PHBV/clay nanocomposites were characterized by means of mechanical, thermal and morphology properties. The addition of natural and modified clays was found not to increase the tensile strength property of the nanocomposites. However, the elongation at break property was found to increase for all nanocomposites. At 0.5 wt% of clay loading of ODA-MMT, the maximum elongation at break was achieved. This result is in accordance with Scanning Electron Microscopy (SEM) analysis which shows the stretching images at 0.5 wt% of clay loading for all nanocomposites. The thermal stability of PHBV/clay nanocomposites was found to increase with the increase of clay loading. Transmission Electron Microscopy (TEM) images showed that exfoliated and intercalated type of nanocomposites was successfully prepared with the incorporation of 1.0 wt% of modified clays loading.
Abstrak Tesis Yang Dikemukakan Kepada Senat Universiti Putra Malaysia Bagi Memenuhi Keperluan Untuk Ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN POLI(HIDROXSIBUTIRAT-BERSAMA-HIDROXSIVALERAT)/TANAH LIAT NANOKOMPOSIT

Oleh

MOHD FIRDAUS BIN MOHD ANUAR

Ogos 2012

Pengerusi : Nor Azowa Ibrahim, PhD
Fakulti : Sains

Dalam kajian ini, tanah liat semula jadi (Na-MMT) dan sintetik hidroksida berlapis dua (LDH) telah diubahsuai untuk menghasilkan tanah liat organo-terubahsuai. LDH telah disediakan melalui kaedah pemendakan bersama dengan menambah titisan larutan NaOH (1M) ke dalam larutan Mg (NO$_3$)$_2$ • 6H$_2$O dan Al (NO$_3$)$_3$ • 9H$_2$O. Kedua-dua Na-MMT dan LDH telah diubahsuai melalui teknik pertukaran ion dengan menggunakan oktadesilamina (ODA) dan natrium stearat untuk menyediakan tanah liat organo-terubahsuai.

Jumlah tanah liat yang ditambah ialah 0.25, 0.5, dan 1.0% berat bagi semua jenis tanah liat. Untuk penyebaran lanjut daripada tanah liat, campuran larutan PHBV / tanah liat telah disonikasi selama 30 minit.

Larutan yang likat telah diisi ke dalam piring Petri kaca dan dikeringkan untuk mendapatkan filem-filem nanokomposit. Kesan muatan tanah liat pada nanokomposit PHBV/tanah liat telah dicirikan melalui sifat-sifat mekanik, terma dan morfologi. Selain itu, tanah liat semulajadi dan terubahsuai didapati tidak meningkatkan kekuatan tegangan nanokomposit. Pemanjangan ketika putus didapati meningkat untuk semua nanokomposit. Pada kadar 0.5% berat muatan tanah liat ODA-MMT, pemanjangan maksimum telah dicapai ketika putus. Keputusan ini adalah selaras dengan analisis Pengimbas Mikroskopi Elektron (SEM) yang menunjukkan imej regangan pada kadar 0.5% berat muatan tanah liat untuk semua nanokomposit. Kestabilan haba nanokomposit PHBV/tanah liat didapati meningkat dengan setiap penambahan muatan tanah liat. Imej Mikroskopi Transmisi Elektron (TEM) menunjukkan bahawa nanokomposit eksfoliasi dan interkalasi telah berjaya dihasilkan dengan penambahan 1.0% berat tanah liat terubahsuai.
ACKNOWLEDGEMENTS

In the name of Allah, the most Beneficent, the most Merciful Praise be to Allah who gave me the strength and patience to complete this study. Next, I would like to take this opportunity to express my sincere gratitude and full of my appreciation to my supervisor, Dr. Nor Azowa for her continuous guidance and advices for me to get through to finish my master study. My appreciation goes to my co-supervisor, Prof. Dato’ Dr. Wan Md Zin Wan Yunus and Prof. Dr. Mansor Ahmad who are willing to help to complete this study. I am grateful to Assoc. Prof. Dr. Mohd Zaki Abd Rahman and Prof. Dr. Mansor Ahmad for their permission to use their laboratory and equipments.

I would like to thank to the staffs of Chemistry Department, Physic Department and Electron Microscopy Unit, Institute of Bioscience, Universiti Putra Malaysia which are helpful to prepare equipments and run instruments for me. Special thanks go to my colleagues in Polymer Group, Chemistry Department, Universiti Putra Malaysia for their support and assistance throughout the period to complete this study.

Last but not least, I wish to thank all my friends that always help me to get through to finish up this study from the beginning until the end of my works and make these years of studies the most memorable one.
I certify that an Examination Committee has met on ………………. to conduct the final examination of Mohd Firdaus Bin Mohd Anuar on his Master of Science thesis entitled "Preparation and Characterization of Poly(Hydroxybutyrate-co-hydroxyvalerate)/Clay Nanocomposites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Abdul Halim B Abdullah, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Khalina Bt Abdan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Zaki B Abd Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mat Uzir B Wahit, PhD
Associate Professor
Faculty of Chemical and Natural Resources Engineering
Universiti Teknologi Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Azowa Ibrahim, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mansor Hj. Ahmad, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Dato’ Wan Md Zin Wan Yunus, PhD
Professor
Department of Chemistry
National Defence University of Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that this thesis is my original work except for quotations, citations and illustrations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutes.

MOHD FIRDAUS B MOHD ANUAR

Date: 13th August 2012
TABLE CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv

CHAPTER

1 INTRODUCTION
1.1 Background 1
1.2 Biopolymers 2
1.3 Justification of the Study 4
 1.3.1 Problem Statement 4
1.4 Objectives of the Study 7

2 LITERATURE REVIEW
2.1 Polymer Blending 8
2.2 Nanocomposites 9
 2.2.1 Layered Silicates 9
 2.2.2 Organically Modified Layered Silicates 11
 2.2.3 Layered Double Hydroxides (LDHs) 12
2.3 Nanocomposite Structure 13
2.4 Polymer/Clay Nanocomposites 15
 2.4.1 Biodegradable Aliphatic Polyesters – Based Nanocomposites 17
 2.4.2 Biodegradable Aromatic Polyesters – Based Nanocomposites 24
 2.4.3 Natural Renewable Resource – Based nanocomposites 25
2.5 Polymer/Layered Double Hydroxides, LDHs Nanocomposites 30
2.6 Preparation of Nanocomposites 34
 2.6.1 Melt Intercalation method 36
 2.6.2 Solution Intercalation Method 37

3 MATERIALS AND METHODOLOGY
3.1 Materials 39
3.2 Modification of Natural Clay 39
3.3 Synthesis of Layered Double Hydroxide, LDH 40
3.4 Modification of LDH 41
3.5 Preparation of PHBV/Clay Nanocomposites 42
3.6 Characterization 43
4 RESULTS AND DISCUSSION

4.1 Modification of Clay
 4.1.1 X-ray Diffraction (XRD) Analysis
 4.1.2 Fourier Transform Infrared (FTIR) Spectroscopy

4.2 Modification of LDH
 4.2.1 X-ray Diffraction (XRD) Analysis
 4.2.2 Fourier Transform Infrared (FTIR) Spectroscopy

4.3 PHBV/Clay Nanocomposites
 4.3.1 X-ray Diffraction (XRD) Analysis
 4.3.2 Fourier Transform Infrared (FTIR) Spectroscopy

4.4 Mechanical Analysis
 4.4.1 Tensile Strength, TS
 4.4.2 Tensile Modulus, TM
 4.4.3 Elongation at Break, E_b

4.5 Thermal Analysis
 4.5.1 Thermogravimetric Analysis (TGA)
 4.5.2 Differential Scanning Calorimetry (DSC)

4.6 Morphology Observation
 4.6.1 Scanning Electron Microscopy (SEM) – Energy Dispersive X-ray Spectroscopy (EDX)
 4.6.2 Transmission Electron Microscopy (TEM)

5 CONCLUSIONS

REFERENCES

APPENDICES

BIODATA OF STUDENT