UNIVERSITI PUTRA MALAYSIA

ESTIMATION OF CARBON IN *Jatropha curcas* L. BIOMASS AND CARBON FOOTPRINT IN ITS SEED PRODUCTION

MUHAMMAD FIRDAUS BIN SULAIMAN

FP 2011 46
ESTIMATION OF CARBON IN *Jatropha curcas* L. BIOMASS AND CARBON FOOTPRINT IN ITS SEED PRODUCTION

By

MUHAMMAD FIRDAUS BIN SULAIMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Agricultural Science

July 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the Requirement for the degree of Master of Agricultural Science

ESTIMATION OF CARBON IN Jatropha curcas L. BIOMASS AND CARBON FOOTPRINT IN ITS SEED PRODUCTION

By

MUHAMMAD FIRDAUS BIN SULAIMAN

July 2011

Chairman : Ahmad Husni bin Mohd Hanif, PhD
Faculty : Agriculture

Biofuel from plants is claimed to be carbon neutral where unlike fossil fuel, carbon dioxide (CO₂) produced from the combustion of biofuel is the same CO₂ assimilated by the plant during photosynthesis. Among the plants that are attracting attention nowadays is Jatropha curcas. However, before biofuel from Jatropha curcas could be labeled as carbon neutral, CO₂ emission and/or sequestration from all sources of the production chain must first be quantified. The present study was therefore carried out from July 2009 until July 2010 at the Tanah Merah Estate, Port Dickson, Negeri Sembilan to (i) quantify carbon fixation through dry matter production of Jatropha curcas biomass, (ii) compare the carbon balance between land cultivated with Jatropha curcas and the land in its native state and (iii) establish a carbon footprint of Jatropha curcas seed production.

Measurements were made at two different plots, one plot planted with Jatropha curcas while the other plot was the native state of the area. Soil CO₂ flux and soil
total and labile carbon were measured monthly while monthly plant biomass of *Jatropha curcas* was estimated from monthly stem diameter measurements 20 trees and an established allometric equation. The estimated biomass was then converted to amount of carbon stored based on analysis of biomass carbon content. In comparing the carbon balance between the two types of land use, carbon balance was calculated as the amount of carbon stored in biomass minus the amount of carbon emitted as soil flux and emissions associated with the use of agricultural inputs. The carbon footprint of *Jatropha curcas* was calculated by dividing the total emitted carbon by the amount of yield (i.e. seed).

Results from this study showed that 2.46 Mg carbon ha$^{-1}$ was sequestered in biomass of *Jatropha curcas* while emission from *Jatropha curcas* cultivation was 9.12 Mg carbon ha$^{-1}$. Soil carbon at both plots did not show any significant changes (P<0.05) throughout this study. Comparison between the two plots showed that emission from the plot planted with *Jatropha curcas* was marginally higher than at the natural state plot by only 1.20 Mg carbon ha$^{-1}$. The minimum carbon footprint value of *Jatropha curcas* cultivation during the first year of its cultivation was 2.96 Mg carbon Mg seed$^{-1}$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian

PENGANGGARAN KARBON DALAM BIOJISIM Jatropha curcas L. DAN JEJAK KARBON DALAM PENGELUARAN BIJINYA

Oleh
MUHAMMAD FIRDAUS BIN SULAIMAN

Julai 2011

Pengerusi : Ahmad Husni bin Mohd Hanif, PhD
Fakulti : Pertanian

Biofuel dari tumbuhan dikatakan bersifat karbon neutral di mana tidak seperti pembakaran bahan api fosil, gas CO₂ yang terhasil akibat pembakaran biofuel adalah gas CO₂ yang sama yang diserap semasa fotosintesis. Antara tumbuhan biofuel yang sedang mendapat perhatian ketika ini ialah Jatropha curcas. Walaubagaimanapun, bagi membolehkan biofuel dari Jatropha curcas dilabel sebagai karbon neutral, pembebasan gas CO₂ dari semua punca sepanjang rantai pemprosesan haruslah ditentukan terlebih dahulu. Oleh itu, satu kajian telah dijalankan bermula dari Julai 2009 sehingga Julai 2010 di Estet Tanah Merah, Port Dickson, Negeri Sembilan dengan tujuan berikut: (i) menentukan pengikatan karbon dalam pembentukan jisim kering Jatropha curcas, (ii) membandingkan keseimbangan karbon antara kawasan yang ditanam dan kawasan yang tidak ditanam Jatropha curcas dan (iii) menerbitkan jejak karbon bagi penghasilan biji Jatropha curcas.

Pengukuran dijalankan di dua plot berbeza dimana satu plot telah ditanam Jatropha
curcas dan satu lagi plot merupakan keadaan asal kawasan tersebut. Fluks CO\textsubscript{2} tanah dan kandungan karbon dan karbon mudah terurai dalam tanah diukur setiap bulan manakala penentuan biojisim Jatropha curcas setiap bulan ditentukan melalui pengukuran diameter batang 20 pokok Jatropha curcas dan persamaan allometrik yang telah diterbitkan. Penganggaran kandungan karbon dalam jumlah biojisim dibuat berdasarkan analisis kandungan karbon dalam biojisim. Bagi perbandingan keseimbangan karbon pada kedua-dua kawasan kajian, keseimbangan karbon dihitung sebagai jumlah karbon tersimpan dalam biojisim ditolak dengan jumlah karbon yang dibebaskan sebagai fluks CO\textsubscript{2} tanah dan dari penggunaan input pertanian. Jejak karbon dihitung sebagai jumlah karbon terbebas dibahagi dengan hasil biji Jatropha curcas.

Hasil kajian ini menunjukkan sebanyak 2.46 Mg karbon ha-1 telah tersimpan di dalam biojisim Jatropha curcas. Jumlah karbon terbebas pula adalah sebanyak 9.12 Mg karbon ha-1. Kandungan karbon dalam tanah didapati tidak mempunyai sebarang perubahan bermakna (P<0.05) sepanjang kajian ini. Perbandingan antara dua kawasan kajian ini mendapati pembebasan karbon pada plot yang ditanam dengan Jatropha curcas hanya melebihi plot keadaan asal sebanyak 1.20 Mg karbon ha-1 sahaja. Jejak karbon bagi penghasilan biji Jatropha curcas adalah 2.96 Mg karbon Mg biji-1.
ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious and Most Merciful. Praised be to Allah SWT, for with His grace I am able to complete my research and ultimately this thesis.

My most esteemed gratitude goes to the chairman of my supervisory committee, Assoc. Prof. Dr. Ahmad Husni bin Mohd Hanif for he has been more than a mentor to me. He has greatly influenced me in my way of thinking and has broadened my perspective of the world. His enthusiasm in seeking knowledge has inspired and motivated me to follow his footprint in becoming a renowned academician and researcher. May Allah SWT repay for his kindness and patience in guiding me throughout the course of this research.

I would also like to express my appreciation to my supervisory committee member, Prof. Dr. Mohd Razi bin Ismail for his constructive views and valuable advice, Assoc. Prof. Dr. Anuar Abd. Rahim for his statistical consultation, motivation and moral support and to all faculty members of the Department of Land Management, Faculty of Agriculture that have helped me directly or indirectly throughout my research and the writing of this thesis.

A special appreciation goes to Zaidi Dan, Helmy Omar, Fauzi Yusof, Amielia Syoliha and Toh Yee Chuan for their direct contribution on the collection of data and samples for this study. They endured scorching heat and soaking rain all for the sake of friendship. Their kindness and dedication will never be forgotten.
My appreciation also goes to Hasnizah, Qudzwatun, Leng, Nor Asma, Sarah, Meng, Alagie, Jenny, Liew and Khalil for not only their material and moral support towards the successful completion of this project, but also for their everlasting friendship.

To the laboratory staffs at the Department of Land Management; Mr. Junaidi, Mr. Fuzi, Mr. Jamil and Mdm. Sarimah, thank you very much for providing me the technical assistance that would certainly make my research less successful without it.

Last but not least, I wish to thank my mother Datin Zuraini Yaacob and my father Dato’ Sulaiman Keling for their unconditional love and my wife Miratul Hada Mohd Ali for being with me through thick and thin. Thank you.
I certify that an Examination Committee has met on 26 July 2011 to conduct the final examination of Muhammad Firdaus Bin Sulaiman on his Master of Agricultural Science thesis entitled “Estimation of Carbon in Jatropha curcas Biomass and Carbon Footprint in its Seed Production” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master of Agricultural Science.

Members of the Examination Committee were as follows:

Anuar bin Abd. Rahim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Samsuri bin Abd Wahid, PhD
Faculty of Agriculture
Universiti Putra Malaysia
/Internal Examiner

Ahmad Ainuddin bin Nuruddin, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
/Internal Examiner

Mohd Hanif bin Harun, PhD
Head
Tropical Peat Institute Unit
Malaysian Palm Oil Board
Malaysia
/External Examiner

NORITAH BINTI OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of **Master of Agricultural Science**. The members of the Supervisory Committee were as follows:

Ahmad Husni bin Mohd Hanif, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Razi bin Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

MUHAMMAD FIRDAUS BIN SULAIMAN

Date: 26 July 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - 2.1 Greenhouse Gases and Climate Change
 - 2.2 The Global Carbon Cycle
 - 2.3 Carbon Assimilation in Biomass
 - 2.4 Carbon in Soil
 - 2.4.1 Soil Organic Carbon
 - 2.4.2 Soil Labile Carbon
 - 2.5 Soil Carbon Exchange to the Atmosphere
 - 2.5.1 Soil Respiration
 - 2.5.2 Factors Influencing Soil Respiration
 - 2.5.3 Soil CO₂ Flux
 - 2.6 Biofuel
 - 2.6.1 History of Biofuel Production
 - 2.6.2 Biofuel Production from Various Feedstock
 - 2.6.3 Status of Biofuel in Malaysia
 - 2.7 *Jatropha curcas*
 - 2.7.1 History of *Jatropha curcas*
 - 2.7.2 Distribution of *Jatropha curcas*
 - 2.7.3 Botanical Description of *Jatropha curcas*
 - 2.7.4 Agronomic Practices in *Jatropha curcas*
 - Cultivation
 - Oil Extraction from *Jatropha curcas* Seed
 - 2.8 Carbon Balance
 - 2.9 Carbon Footprint
 - 2.10 Carbon balance and carbon footprint of *Jatropha curcas* biodiesel production

3. **MATERIALS AND METHODS**
 - 3.1 Study Site and Experimental Setup
 - 3.1.1 Site Description
 - 3.1.2 Experimental Setup
 - 3.2 Biomass Dry Matter Production
 - 3.2.1 Establishment of Allometric Equation
 - 3.2.2 Planted Plot
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Shrub Plot</td>
<td>49</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Determination of Litterfall Production</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Determination of Carbon in Biomass</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Soil Sampling and Analysis</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Bulk Density</td>
<td>53</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Water and Air Filled Pore Space</td>
<td>54</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Total and Labile Carbon</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Soil CO₂ Flux</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Carbon Balance</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>Carbon Footprint</td>
<td>60</td>
</tr>
<tr>
<td>3.8</td>
<td>Statistical Analysis</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Dry Matter Production and Sequestered Carbon in Biomass</td>
<td>63</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Establishment of the Allometric Equation</td>
<td>63</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Biomass Dry Matter Production</td>
<td>65</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Biomass at Planted Plot</td>
<td>65</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Biomass at Shrub Plot</td>
<td>69</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>Litterfall Production</td>
<td>70</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Carbon Accumulation in Biomass</td>
<td>71</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Carbon Accumulation at Planted Plot</td>
<td>71</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Carbon Accumulation at Shrub Plot</td>
<td>74</td>
</tr>
<tr>
<td>4.1.3.3</td>
<td>Carbon in Litterfall</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Soil Carbon</td>
<td>76</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Total Carbon</td>
<td>76</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Labile Carbon</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Soil CO₂ Flux</td>
<td>79</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Measured Flux</td>
<td>79</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Extrapolated Flux</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationship Between Soil Labile Carbon, Water and Air Filled Pore Space and CO₂ Flux</td>
<td>82</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Water and Air Filled Pore Space with Soil Flux</td>
<td>82</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Labile Carbon with Soil Flux</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Carbon Balance</td>
<td>84</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Carbon Balance at Planted Plot</td>
<td>84</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Carbon Balance at Shrub Plot</td>
<td>86</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Comparison between Plots</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Carbon Footprint</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSION</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>FUTURE RESEARCH RECOMMENDATIONS</td>
<td>92</td>
</tr>
</tbody>
</table>

REFERENCES 94
APPENDICES 102
BIODATA OF STUDENT 110
LIST OF PUBLICATIONS 111