
Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2013 Universiti Putra Malaysia Press.

Rootkit Guard (RG) - An Architecture for Rootkit Resistant
File-System Implementation Based on TPM

Teh Jia Yew1*, Khairulmizam Samsudin1, Nur Izura Udzir2 and
Shaiful Jahari Hashim1

1Department of Computer Systems and Communications Engineering, Faculty of Engineering,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Computer Science, Faculty of Computer Science and Information Technology,
Universiti Putra Malysia, 43400 Serdang, Selangor, Malaysia

ABSTRACT

Recent rootkit-attack mitigation work neglected to address the integrity of the mitigation tool itself.
Both detection and prevention arms of current rootkit-attack mitigation solutions can be given credit
for the advancement of multiple methodologies for rootkit defense but if the defense system itself is
compromised, how is the defense system to be trusted? Another deficiency not addressed is how platform
integrity can be preserved without availability of current RIDS or RIPS solutions, which operate only
upon the loading of the kernel i.e. without availability of a trusted boot environment. To address these
deficiencies, we present our architecture for solving rootkit persistence – Rootkit Guard (RG). RG is a
marriage between TrustedGRUB (providing trusted boot), IMA (Integrity Measurement Architecture)
(serves as RIDS) and SELinux (serves as RIPS). TPM hardware is utilised to provide total integrity of
our platform via storage of the aggregate of the clean snapshot of our platform OS kernel into TPM
hardware registers (i.e. the PCR) – of which no software attacks have been demonstrated to date. RG
solves rootkit persistence by leveraging on one vital but simple strategy: the mounting of rootkit defense
via prevention of the execution of configuration binaries or build initialisation scripts. We adopted the
technique of rootkit persistence prevention via thwarting the initialisation of a rootkit’s installation
procedure; if the rootkit is successfully installed, proper deployment via thwarting of the rootkit’s
configuration is prevented. We had subjected the RG to 8 real world Linux 2.6 rootkits and the RG was
successful in solving rootkit persistence in all 8 evaluated rootkits. In terms of performance, the RG
introduced a maximum of 11% overhead and an average of 4% overhead, hence permitting deployment
in production environments.
Article history:
Received: 24 September 2012
Accepted: 14 January 2013

E-mail addresses:
jyteh@yahoo.com (Teh Jia Yew),
khairulmizam@upm.edu.my (Khairulmizam Samsudin),
izura@upm.edu.my (Nur Izura Udzir),
sjh@upm.edu.my (Shaiful Jahari Hashim)
*Corresponding Author

Keywords: Trusted Computing (TC), Trusted
Platform Module (TPM), Malware and rootkits,
SELinux, Linux Integr i ty Measurement
Architecture (Linux-IMA), TrustedGRUB, rootkit
detection and prevention

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

508 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

INTRODUCTION

Recent research into rootkit-attack mitigation focusses upon two major categories: detection
and prevention. Recent works from the first category includes Nguyen et al. (2007), Doug et
al. (2007) and Riley et al. (2007).

Two collective traits are identified within the RIDS works. The first is that the method
employed rests on the fact that detection is based on kernel integrity. Violation of kernel integrity
signifies rootkit compromise. The second is that there exists no mechanism for the guarantee of
platform integrity from the moment the terminal is booted until the kernel loads. With the RIDS
codes or tool deployed and functioning at the kernel level, we can assert that vulnerabilities
exist even from the moment the BIOS boot block code loads until the OS kernel becomes
available. Overcoming this vulnerability requires a trusted boot process, where integrity can
be preserved from the moment the BIOS code loads until the kernel loads.

Realisation of the trusted boot is achievable via the availability of a boot-loader with
Trusted Computing Group (TCG) support, which mandates the utilisation of hardware-based
anchorage for a stage by stage integrity measurement, starting from the BIOS, boot-loader and
finally the OS. In guaranteeing platform integrity, execution of the next stage is only permitted
after the preceding stage has been guaranteed of its safety. Highly reliable integrity of RIDS
solutions is attainable if existing RIDS solutions are complemented with TrustedGRUB (Ulrich
Kühn, 2007).

In the detection category, we discovered that no mechanism is available to provide a truly
reliable guard (the detection codes or tool) i.e. if the integrity of the guard is compromised,
how do we trust the guard any further and who can we trust after a compromise occurs?
Furthermore, how can we ensure that the guard can never lie about its current state, even in
the compromised state?

The answer is of course to have a guard that can never be tampered with. We present the
use of an IMA-based (Riener Sailer et al., 2004) RIDS (Integrity Measurement Architecture)
with TPM hardware anchorage, which provides total reliability of the OS kernel via storage of
digitally signed aggregate of the clean snapshot of the OS kernel into TPM hardware registers
(i.e. PCRs), the theft of which is possible only with physical attacks mounted on the TPM chip.
To date no theft or attacks have been found to be viable through software. The TPM PCR was
able to anchor clean snapshots of the OS kernel, ensuring the availability of a truly reliable
guard in the event of compromise.

Recent works in the second category include Secvisor by Arvind Seshadri et al. (2007),
NICKLE by Riley et al. (2007), HookSafe by Zhi Wang et al. (2009) and IFEDAC by Ziqing
Mao et al. (2011) . Secvisor employs enforcement of Write + Execute in memory pages of
guest OS, barring non-authorized codes from being executed with kernel-level privileges.
NICKLE employs memory shadowing technique utilising shadow physical memory in
VMM (Virtual Machine Monitors) for performing authentication of kernel code in real-time
execution, ensuring only trusted codes be permitted for execution , in turn ensuring freedom
from rootkit codes. In Hooksafe, rootkit defense is mounted via protection of kernel hooks in
guest OS of hypervisors from being hijacked via relocation of dedicated page-aligned memory,
and hardware-based page-level protection is utilised for access regulation of kernel hooks. In

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

509Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

IFEDAC, the marriage of DAC and MAC is utilised for achieving the best of both worlds
for the aim of the development of a malware-resistant DAC-MAC system, which guarantees
security via permitting user-defined objects (e.g. files) in the OS to be trusted, and employing
MAC policies for ensuring malware such as Trojan Horses fails to remain persistent in the
event the malware is successful in its deployment.

Although advanced techniques such as memory shadowing (as per NICKLE) and kernel-
hook protection (as per HookSafe) were employed, the majority of rootkit-mitigation works
neglected one simple but vital factor in rootkit defense i.e. rootkit defense can be mounted via
prevention of the execution of configuration binaries or build initialisation scripts.

Taking this into consideration, we utilised SELinux (Richard Haines, 2010) MAC
(Mandatory Access Control) mechanism where all files (objects) are assumed as a threat
unless otherwise specified. The availability of the MAC configuration mechanism of SELinux,
with its dynamic programming language like SELinux policies, enables the labelling of OS
objects and files via file type enforcement labelling, which labels files into trusted and non-
trusted objects, granting rwx (read, write and execute) permissions to objects deemed trustable
by the OS administrator. In order to preserve normal OS operations, policies were written
for the trusted and permitted execution of binaries only in the /bin and /sbin directories. Our
experiment with 8 real-world Linux kernel 2.6 rootkits demonstrates that all these 8 rookits
require some form of configuration prior to deployment and for proper operation and that
SELinux is effective and successful in the prevention of the execution of configuration binaries
and build initialisation scripts.

A collective trait of Secvisor, NICKLE and HookSafe, all rootkit defenses, was mounted
in hypervisors (also known as Virtual Machine Monitors or VMM) using guest OS. We wish to
point out that recent and the majority of rootkit prevention works are carried out in hypervised
environments, hence, there is no benchmark to evaluate both the performance and effectiveness
of the published rootkit-defense methodologies. IFEDAC, while deployed in real time, neglects
to address the integrity of the guard itself, i.e. how does IFEDAC ensure that the DAC itself
remains trustworthy in the event malware targets the DAC?

In an attempt to complement existing rootkit defenses, we present the RG (Rootkit Guard),
an architecture of merged SELinux MAC (Mandatory Access Control), an IMA-based RIDS
(Rootkit Intrusion Detection System), with TPM hardware-based anchorage and SELinux-based
RIPS (Rootkit Intrusion Prevention System), deployed in real time. To ensure the integrity of
our platform from boot-up until the kernel loads, whereupon SELinux would be available, we
leverage such guarantee using TrustedGRUB. In short, RG possesses these features: ability
to detect presence of rootkit, the ability to never lie about its compromised state and ability
to prevent the manifestation of rootkits via the prevention of the execution of configuration
binaries and build initialisation scripts. RG further provides an encrypted loopback partition
for storage of vital data if a compromise is detected. The partition’s private key is stored in
the TPM hardware register, hence, the impossibility of theft or software-mounted assaults.

Currently, to demonstrate the viability of the RG, we installed 8 real-world rootkits and
attempted the prevention of the execution of both: i) the configuration binaries deemed essential
for the proper deployment of the tested rootkits and ii) the build initialisations scripts (written in
bash, perl). We demonstrated the successful thwarting of both via utilisation and enforcement

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

510 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

of SELinux MAC policies. In terms of performance, evaluation utilising the UnixBench 5.1.3
micro-benchmarking tool introduced only a maximum of 11.3 % of system overhead and an
average of 3.78 % of system overhead. The reasonable overhead has minimal impact on a
running OS and, hence, we believe, practical, real-world deployment is feasible.

As at the time of writing of this paper, RG has been implemented in virtualised environments
using the VirtualBox VMM (Virtual Machine Monitor). We shall, at a later stage, port our RG
implementation to real-time execution .Our work (conducted in real time) provides the actual
scenario of rootkit prevention operating in real time. In terms of deployment in robustness, we
dare assert that our work supplements the clearest and most accurate results for the consideration
of the adoption of our RG in production environments or in environments where the use of
virtualised guest OS is neither possible nor practical.

The rest of this paper is organised as follows: we present next the design of our RG,
followed by details of implementation (under the section Materials and methods), proceeding
to the evaluation of our RG in the section Results and discussion where we demonstrate the
RG’s effectiveness in preventing rootkit configuration and performance benchmarking and,
finally, end with the section Conclusion.

RG DESIGN GOALS AND ASSUMPTIONS

Design goals

The main design goal of RG was to merge TPM hardware-anchored RIDS i.e. IMA with the
implementation of MAC-based Linux security i.e. SELinux for RIPS purposes with a trusted
boot guaranteed by TrustedGRUB, the integrity of which is also guaranteed by the TPM
hardware. We found that recent rootkit-defense work neglected to consider the importance
of ensuring integrity from system boot until the deployment of rootkit defense mechanisms.
The novelty of our work is that this is the first of its kind: we integrated TrustedGRUB, IMA
and SELinux into a single entity, yielding a TPM hardware-anchored RIDS i.e. a RIPS rootkit
defense mechanism with trusted boot feature. To summarise, we developed a rootkit-mitigation
methodology or tool that can never lie about its state (feature provided by the TPM hardware),
and for the effective implementation of rootkit-attack mitigation, permits only trusted objects
to be granted security clearance (feature provided by SELinux).

As mentioned in the introduction, recent efforts in overcoming rootkit persistence have
yielded numerous solutions to the variety of methods to overcome rootkit persistence. Our
work discovered that rootkits would fail to be persistent if its installation is thwarted or if it
failed to be properly configured prior to deployment. Hence, another goal of our RG was to
attempt the prevention of rootkits before they can even begin installation procedure, and if the
rootkit has been successfully installed, to prevent its deployment via thwarting its configuration.

Assumptions

Our RG design and operation are based on these assumptions:

i. Rootkits may infiltrate, but will fail to accomplish proper deployment if their binary fails
to execute for initialising the rootkit or for configuration purposes.

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

511Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

ii. A platform may be compromised but it will reveal that it is in compromised state i.e. the
platform never lies on the integrity of its state.

iii. The RG’s RIDS, although employing a commonly deployed method of comparison of
healthy with altered hash values in the IMA, operates without the availability of intelligent
heuristics algorithms. Hence, the RG serves to alert the OS administrator of a possible
compromise and the user can then decide if the alert is one of false positive or vice versa.

iv. Our incorporation of SELinux as rootkit prevention mechanism with MAC implementation
operates based on the presumption that all files are treated as malicious unless otherwise
specified in the SELinux policies. Hence, rwx file permission privileges are granted only to
files permitted by deployed SELinux policy, configured by the OS administrator.

v. RG serves to complement the multiple, existing rootkit-defense methodologies available,
especially Secvisor, NICKLE and Hooksfe. No one single tool can claim 100% effectiveness
in rootkit-attack mitigation.

MATERIALS AND METHODS

We present the RG architecture (Fig.1) as the proposed solution to the malware threat as
mentioned in the introduction. Our proposed solution is effective against solving binary rootkit
persistence and any rootkit that operates via initialisation or configuration of a binary file, for
example, to run the SuckIT rootkit, the rootkit will have to be configured and executed using
./sk c command on the victim’s machine (Phrack Magazine, 2012). Lrk5 i.e. (Linux Rootkit
Documentation, Lrk5, 2012) and Adore-ng i.e. (Linux Rootkit Documentation, Adore , 2012)
are other examples of rootkits with deployment methods similar to SuckIT.

Our RG comprises two major arms: Rootkit IDS (detection and alert) and Rootkit IPS
(prevention). Effective implementation mandates our RG be compiled into the Linux kernel,
hence, part of the Linux file-system. Availability of a TPM guarantees the integrity of a clean
kernel state, as such state is utilised by RG IDS and serves as the essence of the RG’s reliability.
The Rootkit IDS comprises:

i. IMA databases (clean and runtime) – protects kernel files and modules

ii. SELinux Policy database – protects user-defined critical files

iii. IMA database SHA1Comparison Engine

iv. IMA database Compromise Alert Mechanism

v. SELinux Security Policy Violation Alert Mechanism

while the Rootkit IPS encompasses the:

i. Encrypted Loopback Partition

ii. Deny File Access Features - to the infected file (via removal of rwx privileges)

SHA1 collision attacks occurring since 2004 (Bruce Schneier, 2005), Michael Szydlo,
2005), Xiaoyun Wang et al., 2005) can be employed for the aim of defeating the SHA1
digital finger-printing. In the event such attacks do occur, contamination only affects the

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

512 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

runtime database of hashes. The clean database remains reliable as the aggregate hash of the
clean database is extended (i.e. using TPM_Extend) into the TPM hardware PCR (Platform
Configuration Register) no. 10 as per the technique adopted in Integrity Measurement
Architecture or IMA i.e. as per IMA Wikipage Main (2012). Should alterations occur to the
aggregates, the occurrence would signify compromised integrity of the clean database.

Operational-wise, two RG vital components are developed:

1. RG Module (Kernel Space)

Both the Rootkit IDS and IPS features are integrated into a kernel module called the RG Kernel
Module, which loads simultaneously with kernel loading, i.e. initialising from init level 1.
Such ensures detection of integrity violation at the earliest possible stage. We further include
an option for the module to be built into the kernel.

Rootkit detection and prevention are simultaneously executed by the RG Module. It is,
hence, imperative that the module interfaces to both the IMA and the SELinux Security Policy
Violation Alert Mechanism. Fig.2 illustrates the arms and functions of the RG Module. A rootkit
compromise alert is triggered via discrepancies in the IMA database and violations in SELinux
Security Policies. The RG Module is protected from rootkits targetting it via the sealing of the
SHA1 of the clean RG module into the TPM PCR.

Fig.1: RG architecture

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

513Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Fig.2: RG Kernel module components

2. RG Admin Center(User Space)

The RG is equipped with a control panel i.e. the RG Admin Center, a user-space application
permitting users to configure RG, at pre- and post-deployment stages; this is detailed in the
next section. The list of RG Admin Center features is given here:

i. Creation of a database of kernel files and modules (Build -DB)

ii. Digitally signing the database in i) above using a private-key created by GPG (Sign-DB)

iii. Creation of an Encrypted Loopback Partition for storage of user-defined critical files
(e.g. missile launch codes) (Init-Partition)

iv. Seal the key in ii) above to the TPM PCR (Seal)

TPM-protected Encrypted Loopback Partition

The RG incorporates an encrypted loopback partition (i.e. part of Rootkit IPS) for storage
of user-defined critical files e.g. nuclear warhead launch codes. Protection of this partition is
provided by 1024-bit RSA Encryption, whose private key is stored in the TPM; hence, the
impossibility of theft.

IMPLEMENATION & TEST –BED

Implementation is conducted in two stages. See Fig.3:

a. Pre-Deployment Configurations: Essential set-ups and configurations necessary for the
proper and effective operation of the RG

b. Actual, Real-Time Deployment of the RG: The RG in action, implemented in a production
environment

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

514 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Unlike most malware research work which performs implementation in VM environments and
deployment in guest OSes (Ryan Riley et. al., 2008; Arvind Seshadri et. al. ,2007), our RG
was deployed in an actual platform with no hypervisors utilised. RG deployment was ported
and executed on a Dell Latitute E5400 laptop, with the following specifications: 3 GHz Core 2
Duo CPU, 4GB DDR-2 RAM, running Fedora Core Linux 16, with kernel 3.1.7. Currently, our
implementation and test-bed is conducted on the same laptop as above, albeit in the VirtualBox
Hypervisor (an open source hypervisor). We allocated 1.3 GB of RAM to the same Linux OS
(installed as Guest OS in VirtualBox) running identical kernel. Each stage is detailed here:

a. Pre-Deployment Configurations

The pivotal part of the RG is the availability of a clean database of the IMA-measured SHA1
list of kernel files and modules from a freshly configured platform .We term this the Clean IMA
Database. RG Admin’s Build-DB feature is utilised for this purpose. Upon deployment, the
clean database is compared to a runtime database of similar SHA1 list for rootkit detection.

Next, SELinux is utilised to establish security context for user-defined critical files via
the writing of a dynamic programming language like SELinux policies (SELinux rules) . A
critical files and objects domain is created and these critical files are labelled by SELinux with
file type enforcement: rg_secured_t. Only files and also objects labelled with rg_secured_t are
granted execution privileges. A database of clean SELinux policies for the critical files-objects
is established. TrustedGRUB is configured to preserve the integrity of boot essential files (esp.
initrd and vmlinuz). Finally, the creation of an Encrypted Loopback Partition for storage of
critical files accomplishes this stage.

b. Actual, Real Time Deployment of the RG

This section considers the rootkit infiltration events after a SuckIT-type rootkit was successfully
planted on the victim’s machine (V). Configuration of the SuckIT binary is essential prior to
the execution of a backdoor to permit access to V machine by a remote attacker (A) machine.

Upon rootkit binary execution (i.e. ./sk c), two mechanisms in the Rootkit IDS kick in to
alert the user: the IMA database’s SHA1 Comparison Engine (see Fig.2) via SHA1 anomalies
in the clean and runtime databases, and the SELinux Policy Violation Alert Mechanism issues an
alert on the user’s Desktop due to policy violation for two possible actions: either i) the rootkit
attempts to access files in the critical files domain with rg_secured_t file type enforcement or
ii) files not labeled rg_secured_t file-type enforcement attempt execution.

The Rootkit IPS steps in and unmounts the Encrypted Loopback Partition, preventing
possible data theft (e.g. missile launch codes) by the rootkit. Instinctively, the detected rootkit
is denied rwx privileges by SELinux as a decontamination measure. Fig.3 details real-time
deployment in a procedural illustrative view.

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

515Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Fig.3: Deployment of the RG – procedural flow illustration

RESULTS AND DISCUSSION

Effectiveness

We subjected our RG to 8 real-world Linux 2.6 rootkits to gauge its effectiveness and attempted
the prevention of both the execution of the configuration binaries and build scripts, both
actions deemed essential for the proper deployment and installation of the tested rootkits.
We demonstrated the successful thwarting of a rootkit binaries configuration via utilisation
and enforcement of SELinux MAC policies enforcing rg_secured_t file type enforcement in
our platform. The results are summarised in Table 1. The prevention of the execution of the
configuration binary of one of the rootkits experimented on i.e. SUCKIT is shown in Figure 4.

TABLE 1
RG Effectiveness in the Prevention of Real World Linux 2.6 Rootkits

Rootkit Pre-deployment means Prevention successful?
Kbeast-v1

Installation via build script execution

Yes

Medusa– 0.7.1
Sebek-3.2
Lrk5
Mood-nt
SuckIT

Execution of configuration binarySuperkit
Adore-ng

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

516 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Performance

The Rootkit IDS: IMA integrity assessment via SHA1 Comparison Engine of all kernel files
consumes 70s was measured using Bootchart (Bootchart, 2012). For the Rootkit IPS: we
utilised UnixBench 5.1.3 for micro-benchmark evaluation of our RG. This tool is capable of
providing a fine-grain performance impact of RG. The type and nature of tests performed are
shown in Figure 5. Our results listed two highest overheads as the price of running our RG:
11% - from Filecopy 4KB (buffer size 8000 maxblocks) test and 9% from the Dhrystone test.
The average overall performance overhead for our RG wass 3.78 %.

The performance penalty is due to the operation of the RG kernel module executing security
checks on the kernel files in the Linux file-system. The SHA1 Comparison Engine executes via
comparing hashes of runtime kernel files with hashes in the clean database. This requires the
use of string handling and comparison functions (which explains the Dhrystone test overhead)
and procurement of hashes of all kernel files (which explains the Filecopy test overhead). Near
negligible overheads are possible due to the power of contemporary user-computing platform
hardware i.e. 4GB RAM and 7,200 rpm HDD plus 3GHz Core 2 Duo CPU.

In terms of overhead, the performance of our RG was relatively on par with HookSafe,
which reports a maximum overhead of 7% and an average overhead of 4%. Next, compared with
another rootkit-attack mitigation model which is similar to our RG but without hardware-based
anchorage for guaranteeing platform integrity i.e. the IFEDAC (Ziqing Mao et al., 2011), our
RG showed better performance. The IFEDAC introduced an overhead of a maximum of 19%
and an average of 5.4%. NICKLE rakes up a maximum of 13% of overhead and an average
of 5.45%. All reported performance results were obtained using UnixBench.

CONCLUSION

This paper presents an architectural model i.e. Rootkit Guard (RG) for solving rootkit
persistence. Our RG utilises the current trend in security solutions in the computing industry
today, the TPM, in providing a complementing security solution with TPM-platform integrity
guaranteed by the TPM hardware. RG incorporates Tripwire-like features and blends both IMA
as the RIDS and SELinux security features as the RIPS in providing one weapon in the armory
of tools/solutions against rootkit persistence. Our RG’s inclusion in the kernel ensures that
RG is a limb of the platform; hence, RG is part of the platform’s ‘biological’ immune-defense
system against rootkits. Evaluation of the RG, both in terms of effectiveness i.e. prevention
of deployment of 8 real-world Linux 2.6 rootkits and performance i.e. with average overall
performance overhead of only 3.78% underscores the fact that RG is viable for deployment
in real-time due to its near-negligible consumption of system resources. The RG complements
other existing rootkit-attack mitigation solutions in rootkit defense for OSs.

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

517Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Fig.4: Prevention of the SuckIT Configuration Binary, ./sk, from Execution

9,152

4,562

0,612

7,918

5,962

11,293

0,359 0,188 0,272 0,779 0,96

3,298

0

2

4

6

8

10

12

Performance Evaluation of RG

Over
head
(in %)

Fig.5: Performance Evaluation Results of RG Using UnixBench 5.1.3

Teh Jia Yew, Khairulmizam Samsudin, Nur Izura Udzir and Shaiful Jahari Hashim

518 Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

ACKNOWLEDGEMENT

We are indebted to the Research Management Centre (RMC), UPM, for the financial support
on our work via Grant No. : UPM/700-2/1/RUGS/05-01-12-1638RU. The authors further wish
to thank the Malaysian Ministry of Higher Education (MOHE) for the award of the myBrain
– myPhD Scholarship to the corresponding author in support of this work.

REFERENCES
Arvind, S., Mark, L., Ning, Q., & Adrian, P. (2007). SecVisor: A Tiny Hypervisor to Provide Lifetime

Kernel Code Integrity for Commodity OSes, SOSP’07. October 14–17, Stevenson, Washington, USA.
ACM.

Bickford, J., O’Hare, R., Baliga, A., Ganapathy, & V. Iftode, L. (2010). Rootkits on smartphones: attacks,
implications and opportunities. In the Proceedings of the Eleventh Workshop on Mobile Computing
Systems & Applications. ACM. New York. pp. 49–54.

Bootchart. (2012). Open Source Boot-time Measurement Tool. Retrieved on March 15, 2012 from http://
www.bootchart.org.

Bruce, S., (2005). Schneier on Security- The blog covering security and security technology. Retrieved
from http://www.schneier.com/blog/archives/2005/02/sha1_broken.html.

Doug, W., & James, H. G. (2007). A Normality Based Method for Detecting Kernel Rootkits. ACM.

IMA Wikipage Main. (2012). Integrity Measurement Architecture (IMA). Retrieved on March 15, 2012
from http://domino.research.ibm.com/comm/research_people.nsf/pages/sailer.index.html.

Jonathan, M., McCune, B., Parnoy, A., Perrigy, M., Reiteryz, K., & Hiroshi, I. (2008), Flicker: An
Execution Infrastructure for TCB Minimization. EuroSys’08, April 1.4, 2008, ACM.

Kevin, R. B. B., Stephen, M., & Patrick, D. M. (2008). Rootkit-Resistant Disks. ACM CCS Journals
- Conference on Computer and Communications Security in the Proceedings of the 15th ACM
Conference on Computer and Communications Security, October 27–31.

Linux Rootkit Documentation, Lrk5 (2012). Linux Rootkit 5 Technical Documentation. Retrieved on
March 22, 2012 from http://www.phrack.org/issues.html?issue=63&id=18.

Linux Rootkit Documentation, Adore (2012). Linux Rootkit Technical Documentation. Retrieved ofrom
http://www.phrack.org/issues.html?issue=61&id=10.

McAfee Inc. (2006). Rootkits, part 1 of 3, The growing threat, White Paper. Retrieved on August 15,
2012 from http://download.nai.com/Products/mcafee-avert/whitepapers/akapoor_rootkits1.pdf.

Michael, S.(2005). SHA1 Collisions can be Found in 2^63 Operations, RSA Labs. Retrieved on December
15, 2012 from http://www.rsa.com/rsalabs/node.asp?id=2927.

Nguyen, A. Q., & Yoshiyasu, T. (2007). Towards a Tamper Resistant Kernel Rootkit Detector. ACM.

Phrack Magazine. (2012). SuckIT Rootkit Technical Documentation, Volume 0x0b. Issue 0x3a. Phile
#0x07 of 0x0e. Linux on-the-fly kernel patching without LKM. Retrieved on March 11, 2012 from
http://www.phrack.org/issues.html?id=7&issue=58.

Reiner, S., Zhang, X., Trent, J., & Leendert, v. D. (2004), Design and Implementation of a TCG based
Integrity Measurement Architecture. In the Proceedings of the 13th USENIX symposium, CA , USA,
USENIX Association.

Rootkit Guard (RG) - An Architecture for Rootkit Resistant File-System Implementation Based on TPM

519Pertanika J. Sci. & Technol. 21 (2): 507 - 520 (2013)

Riley, R., Jiang, X., & Xu, D. (2008). Guest-Transparent Prevention of Kernel Rootkits with VMM-Based
Memory Shadowing. In Lippmann, R., Kirda, E., & Trachtenberg, A. (Eds.) RAID 2008. LNCS, vol.
5230, pp. 1–20. Springer, Heidelberg.

SANS Institute. (2012). Security Predict. Retrieved on March 15, 2012 from http://www.sans.edu/
research/security-laboratory/article/security-predict2011.

Richard, H. (2010). The SELinux Notebook, Volume 1 – The Foundations. GNU Free Documentation,
pp. 14 – 30.

Tripwire Homepage. (2010). Tripwire. Retrieved on April 5, 2010 from http://sourceforge.net/projects/
tripwire/.

Ulrich, K., Marcel, S., & Christian, S. (2007). Realizing Property-Based Attestation and Sealing with
Commonly Available Hard- and Software. STC’07, November 2, 2007, ACM, pp. 50 – 57.

Xiaoyun, W., Yiqun, Y., Hongbo, Y. (2005). Finding Collisions in the Full SHA-1. Advances in
Cryptology-Crypto 05, LNCS Springer, 3621, pp. 17-36.

Zhi, W., XuXian, J., Weidong, C., Peng, N. (2009). Countering Kernel Rootkits with Lightweight Hook
Protection, CCS’09, November 9–13, ACM.

Ziqing, M., NingHui, L., Hong, C., & XuXian, J. (2011). Combining Discretionary Policy with Mandatory
Information Flow in Operating Systems. ACM Transactions on Information and System Security.
Vol. 14. No. 3. Article 24.

