
Malaysian Journal of Mathematical Sciences 7(2): 247-272 (2013) 
 

247 
 

 

 
 

Effect of Different Subsectional Basis and Testing Function in the 
Method of Moments for the Scattering from Two Dimensional 

Dielectric Scatterers  
 

1*Ng Tze Wei, 1,2Zulkifly Abbas and 2Nurul Huda Osman 
 

1Institute for Mathematical Research,Universiti Putra Malaysia,  
43400 UPM Serdang, Selangor, Malaysia 

 
2Department of Physics, Faculty of Science, 

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 
 

E-mail:ngwei302@gmail.com 
 

*Corresponding author 
 
 

ABSTRACT 
Different integral equations are reduced to a system of linear equations via method 
of moments (MoM) where the different basis and testing function utilised are 
sinusoid/pulse, sinusoid/sinusoid, sinusoid/triangle, triangle/pulse, triangle/sinusoid 
and triangle/triangle method. A hollow/layered dielectric cylinder has been taken as 
a representative case study. Comparison is made on the convergence and accuracy 
due to different testing function where the mean relative error is investigated 
numerically to show the essential differences of different basis and testing function 
in the MoM using different implementation techniques and different boundary 
conditions. The Gauss quadrature and staircase approximation technique is used in 
calculating the impedance matrix elements. The different boundary conditions 
utilised is the exact and impedance boundary condition. Numerical results points out 
to the need to investigate the performance of other basis and testing functions for 
dielectric scatterers. 
 
Keywords: Method of moments, surface integral equation, numerical analysis, error 
analysis 

 
 

1. INTRODUCTION 
Different numerical techniques have been applied in 

electromagnetic problems such as the MoM for the radiation, scattering and 
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many other applications where numerical results are verified using exact 
solutions, measured data, solution obtained from other techniques providing 
the user confidence regarding the accuracy of the numerical solution (Davis 
et al. (2005)). Surface integral equations were developed to allow treatment 
of 2 dimensional scatterers to overcome memory size limitation needed for 
computer code implementation (Beker et al. (1990)). The continuous linear 
operator is projected onto finite dimensional subspaces defined by the basis 
and testing functions when the method of moments (MoM) is used to 
discretise the continuous linear equation into a matrix system to produce an 
approximate solution (Peterson (1998)). The choice of basis and testing 
functions plays a role in the accuracy and convergence of results where the 
theoretical convergence rates of the current error and scattering error in 
transverse magnetic (TM) and transverse electric (TE) scattering by a 
circular conducting cylinder is investigated (Davis et al. (2004)) for 
different expansion and testing sets. However, the effect of permittivity of 
dielectric object towards the convergence and accuracy of the numerical 
solution is not taken into account. Usually one would resort to increase the 
matrix size in the MoM to minimize the error in numerical computations so 
that this can increase the users’ confidence of the numerical solution. 
Consequently, this would result in higher computer storage requirement of 
the impedance matrix elements and the computation time would also 
increase. This effect becomes worse for large size dielectric object because 
the matrix size required would be very high to achieve an accurate solution.  

 
The MoM results in fully populated matrices (Jin (2010)) and 

therefore the computing time and computer storage requirement is greatly 
increase when the matrix size is increased and therefore this is not always 
desirable. When the MoM impedance matrix size has to be reduced in order 
to save the computer storage requirements and computation time, different 
basis and testing function can result in different amount of error 
contamination at different mesh density when dealing with dielectric 
scatterers. Different implementations can give different convergence rate 
and different memory requirements even though the numerical technique 
used is the same (Jin (2010)) and this may depend on the basis and testing 
function utilised. Therefore, a comparative study on the effect of different 
subsectional testing function towards the variation of error with 
samples/wavelength for dielectric scatterers is worthwhile because the 
testing function that give a more acceptable result using a smaller 
impedance matrix size or faster convergence can be selected to save 
computer storage requirements and computation time.  
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 In this paper, the different basis and testing function considered for 
numerical solution is the triangle/pulse (TP), triangle/triangle (TT), 
triangle/sinusoid (TS), sinusoid/pulse (SP), sinusoid/triangle (ST), and 
sinusoid/sinusoid (SS). Triangle/sinusoid refers to triangle basis sinusoid 
testing. These basis and testing function are selected as the coefficients of 
the basis function remains finite and well defined for any location of the 
basis and testing function throughout the domain (Peterson (1998)).  

 
The different integral equation formulation considered in this paper 

is the electric field integral equation (EFIE), magnetic field integral 
equation (MFIE), Poggio-Muller-Chu-Harrington-Wu integral equation 
(PMCHW) and Muller integral equation (Kishk (1991)). Two different 
numerical implementation techniques are considered in computing the 
impedance matrix elements which is the Gauss quadrature and staircase 
approximation technique. 
 
 

2. THEORY 
           The electric and magnetic fields generated by the surface electric 
currents, J


 and surface magnetic currents, M


 are as follows (Kishk 

(1991)). 
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k   .                                                                 (8) 
 

2 f                                                                      (9) 
 

( , )G     is the 2 dimensional Green’s function and    and   are 
the source and the observation points respectively. In this manuscript, the 
time convention j te   is selected.   is the permeability whereas   is the 
permittivity and f is the frequency. According to the surface equivalence 
principle, the boundaries of region iV  with permittivity ri  and 
permeability ri  are replaced by electric currents for conducting surfaces 
and equivalent electric and equivalent magnetic currents for dielectric 
boundaries to obtain the fields in region iV  (Kishk (1991)). To ensure the 
continuity of the tangential component of the fields dielectric interface, the 
surface currents appearing on the opposite sides of the interface is taken to 
be of the same magnitude and in the opposite direction (Kishk (1991)). The 
boundary conditions on conducting and dielectric surfaces is 

 
 0dn E   on .cdS                                     (10) 
 0en E   on .cfS                                         (11) 
 

d en E n E    on .dfS                              (12) 
 

d en H n H    on .dfS                             (13) 
 

cdS  is the interface between conducting and dielectric regions. cfS is the 
interface between conducting and free space region. dfS  is the interface 
between dielectric and free space region. Equation (12) and (13) is used as 
the exact boundary condition (EBC) that can be replaced by the impedance 
boundary condition (IBC) which is given by (Kishk (1991)) 
 

                                        1 1 0 1ˆ ˆ ˆ( )n E n n H   
 

                          (14) 

  1
r

r





                                           (15) 

 
For the details regarding the derivation of the surface integral 

equation, one can easily refer to (Beker (1990)) and they will not be 
repeated here. The combined field integral equation is utilised to  avoid 
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spurious solution due to the interior resonance problem on closed 
conducting and impedance surfaces (Huddleston et al. (1986)), (Kishk 
(1991)).  

 
The different surface integral equations are reduced to matrix 

system involving unknown surface currents using the MoM and the general 
matrix takes the form [ ] [ ][ ]m mn nV Z I  where [ ]mnZ  is the square impedance 
matrix, [ ]nI is the column matrix for the unknown expansion coefficients of 
the surface currents respectively and [ ]mV  is the excitation column matrix 
(Kishk (1991)). By solving the system matrix, the induced currents on all 
the interfaces can be determined. The generic integrals resulted from the 
MoM are as follows (Gibson (2007)). 
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where X A  or F and K J  or .M  
 

The singularity of the generic integral (19) and (20) is extracted 
using Cauchy principal value integration before evaluating the integral 
regardless of the basis and testing function employed, that is when the 
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source points coincide with the observation points the value of the generic 
integral (19) and (20) is zero (Gibson (2007)). 
 

ˆ( ) ' ' ( , ') ' ( ) 2.
s

S

n K G d K


     


                       (21) 

 
For triangle/pulse and sinusoid/pulse method, the basis function is 

differentiable and the pulse testing function absorbs the derivative in the 
generic integral (18) by using the method of finite difference (Peterson 
(1998)), that is 

 
2

1
( ) ( ) ( ) [ ( )] .mf t X Kt d X Kt 

                               (22) 
 
For triangle/ triangle, triangle/ sinusoid, sinusoid/ triangle and sinusoid/ 
sinusoid method, the generic integral (18) is evaluated by distributing the 
del operator (Gibson (2007)), that is given as 
 
         ( ) ( ) ( ) [ ( ) ( )] ( ) .m mf t X Kt d f t X Kt d                     (23) 

 
The singular integrals are evaluated through the use of inner 

analytical integration and outer numerical integration. Details of numerical 
implementation can be found in (Gibson (2007)). The small argument 
approximation for the Hankel function is utilised when dealing with 
singular integrals. 
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The value of   in equation (24) is equal to 1.781072418. The inner 
analytical integration is given in the Appendix.  
 
 

3.  METHODOLOGY 
For the Gauss quadrature computing technique, the technique of 

computing is as follows. For the TT, TS, ST and SS method, the generic 
integrals are evaluated at 6 quadrature points for the inner and outer 
numerical integration over the segment length h.  From Figure 1(a) and 
1(b), 1 1m m m mt t t t h     for triangle and sinusoid testing function 
whereas 1/ 2 1/ 2 2m m m mt t t t h      for pulse testing function. For TP and 
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SP method, due to the fact that the pulse spans from the half length of a 
particular segment length to the half length of the adjacent segment length 
whereas the triangle function or the sinusoid function spans over 2 adjacent 
segment length, the numerical integration for singular and non-singular 
generic integrals is performed by decomposing the integrals of a particular 
basis function into 4 segments of the same length, and each segment is 
evaluated over 3 quadrature points for the inner and outer numerical 
integration. The pulse tested is decomposed into 2 segments, and each 
segment is evaluated over 3 quadrature points. For that, we have maintained 
the same number of quadrature points for the inner and outer numerical 
integrations for every segment length h. The value of the wavenumber in 
the sinusoid basis and testing function is taken  to be equal to the freespace 
wavenumber. 

 
(a)                                                               (b) 

 
Figure 1: (a) Triangle basis function and pulse testing function (b) Triangle basis function 
and triangle testing function where the m-th testing function overlaps with the n-th triangle 

basis function 
 

For the staircase approximation computing technique, the technique 
of computing is as follows. For the TT, TS, ST and SS method; the generic 
integrals are evaluated by using a representation of 6 pulses/intervals for the 
inner and outer numerical integration over the segment length h where this 
is similar to the number of quadrature points as in the evaluation for 
sinusoid and triangle function using the Gauss quadrature technique. As 
noted previously, for TP and SP method, due to the fact that the pulse spans 
from the half length of a particular segment length to the half length of the 
adjacent segment length whereas the triangle and sinusoid basis function 
spans over 2 adjacent segment length, the numerical integration for singular 
and non-singular generic integrals is performed by decomposing the 
integrals of a particular basis function into 4 segments of the same length, 
and each segment is evaluated by using a representation of 3 
pulses/intervals for the inner and outer numerical integration. The pulse 
tested is decomposed into 2 segments, and each segment is evaluated by 
using a representation of 3 pulses/intervals. 
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The number of pulses/intervals used for the pulse testing function 
in the staircase approximation technique is similar to the number of 
quadrature points used for the pulse testing function evaluated using Gauss 
quadrature technique. For that, we have maintained the same number of 
pulses/intervals for the inner and outer numerical integrations for every 
segment length h. For illustration purposes, Figure 2 shows the 
representation of the pulse function, triangle function and sinusoid function 
using 6 pulses/intervals over the segment length h where 2 1h t t   for 
Figure 2(a), whereas for Figure 2(b) and Figure 2(c), 2 1 3 2h t t t t    . 
 

 
(a) 

 
(b) 

 

 
(c) 
 

Figure 2: Staircase approximation of (a) pulse (b) triangle (c) sinusoid function using 6 
pulses/intervals over segment length h. 

 
In both computing techniques, the flat-faceted mesh employed in our codes 
is regular with the segment length h. The mesh element width is  /h n  
where   is the wave length of the incident plane wave and n  is the number 
of samples/wavelength (Davis et al. (2005)). Comparison is made for 
identical solution conditions, such as the number of expansion functions, 
the numerical integration of Green's function and similar mesh density. The 
relative error is given by 
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                                          0| |x xxx
x x




                                  (25) 

 
where x is true value of a quantity and 0x  is the calculated values. The 
mean relative error of the surface current density is computed for both 
computing techniques at different number of samples/wavelength. 
 
 

4. VALIDATION AND VERIFICATION 
The TE scattering from a hollow dielectric cylinder with b = 

(0.0819*2/π) meter and a = (0.0819*2*0.6/π) where b  is the outer radius 
and a  is the inner radius with the relative permittivity, εr  = 4  and relative 
permeability µr = 1 at 915 MHz is considered. The incident magnetic plane 
wave of unity magnitude. Due to inadequate space in the paper only 3 
angles are shown for brevity. Good agreement is observed with the exact 
eigenfunction series solution (Bussey et al. (1975)) regardless of the basis 
and testing function used on the different surface integral equations.  

 
 

TABLE 1: Magnitude of the magnetic current density (unit: V/m) on the outer layer of a 
hollow dielectric cylinder using Gauss quadrature technique 

 
Method Angle(deg.) EFIE MFIE PMCHW Muller Exact 

 
SP 

0 328.083 327.3831 328.1792 328.3338 328.1137 
90 200.0225 199.2938 200.45 200.1301 200.0712 

180 333.2926 332.9305 334.1597 333.3484 333.4593 
 

SS 
0 328.0691 327.611 328.0877 328.3244 328.1137 
90 199.9407 199.5369 200.2318 200.0557 200.0712 

180 333.3099 333.0443 333.7805 333.3951 333.4593 
 

ST 
0 328.0689 327.6109 328.0879 328.3229 328.1137 
90 199.9408 199.5368 200.2321 200.055 200.0712 

180 333.31 333.0443 333.7806 333.3945 333.4593 
 

TP 
0 328.1909 327.4925 328.2859 328.4419 328.1137 
90 200.0883 199.3611 200.5151 200.196 200.0712 

180 333.4022 333.0409 334.2682 333.458 333.4593 
 

TS 
0 328.2065 327.7206 328.0815 328.6916 328.1137 
90 200.0665 199.6044 200.202 200.4312 200.0712 

180 333.4816 333.1548 333.7958 333.8129 333.4593 
 

TT 
0 328.1768 327.7205 328.1948 328.4309 328.1137 
90 200.0066 199.6043 200.2969 200.1208 200.0712 

180 333.4197 333.1548 333.8887 333.5042 333.4593 
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TABLE 2: Magnitude of the magnetic current density (unit : V/m) on the outer layer of a 
hollow dielectric cylinder using staircase approximation technique 

 
Method Angle(deg.) EFIE MFIE PMCHW Muller Exact 

 
SP 

0 328.0967 326.8061 327.7181 327.8137 328.1137 
90 199.6694 198.2682 199.5291 200.0121 200.0712 

180 333.0646 332.7043 334.2627 333.3858 333.4593 
 

SS 
0 328.1605 326.807 327.8527 327.8834 328.1137 
90 199.6267 198.2673 199.4844 199.9548 200.0712 

180 333.1116 332.7054 334.1524 333.4443 333.4593 
 

ST 
0 328.1607 326.8069 327.8523 327.8831 328.1137 
90 199.6267 198.2671 199.4853 199.954 200.0712 

180 333.1115 332.7053 334.1538 333.4434 333.4593 
 

TP 
0 328.2065 326.9164 327.8258 327.9239 328.1137 
90 199.7359 198.3356 199.5953 200.0786 200.0712 

180 333.1753 332.8159 334.3742 333.4965 333.4593 
 

TS 
0 328.2706 326.9173 327.9612 327.9936 328.1137 
90 199.6937 198.3347 199.5516 200.0213 200.0712 

180 333.223 332.817 334.2645 333.5551 333.4593 
 

TT 
0 328.2705 326.9171 327.9601 327.9933 328.1137 
90 199.6932 198.3345 199.5514 200.0204 200.0712 

180 333.2223 332.8169 334.2652 333.5541 333.4593 
 
 

5.   RESULTS AND DISCUSSION 
The TE scattering by a hollow dielectric cylinder with b = 

(0.0819*2/π) meter and a = (0.0819*2*0.6/π) where b  is the outer radius 
and a  is the inner radius at the frequency of 915 MHz is considered. For 
the inner layer, εr  = 1 and µr = 1 whilst for the outer layer, µr = 1 and  
different values of r  are selected. Numerical data in terms of variation of 
outer layer surface magnetic current density mean relative error with 
samples/wavelength for εr = 77.3-j37.2 (Ikediala et al. (2002)), εr = 31.7-
j136.8 (Yifen et al. (2003)), and εr  = 75-j300 (Peterson (1994)) is tabulated  
in from Table 3 to Table 8 for both computing techniques at the frequency 
of 915 MHz. The variation of mean relative error with samples/wavelength 
is tabulated in Table 3, 4 and 5 using the Gauss quadrature technique. The 
number of samples/wavelength, n  used is 30, 40, 50, 60 and 70 samples/ λ0 
for the outer radius and inner radius where λ0 is the free space wavelength. 
This corresponds to the MoM impedance matrix size of 96 by 96, 128 by 
128, 160 by 160, 192 by 192 and 224 by 224 by taking the overall surface 
electric and magnetic current density into account. The computer storage 
requirements is denoted by the size of the matrix because the larger the 
matrix, the computer storage requirement needed will be higher and the 
computing time will also increase. 
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The location where the testing function overlaps the basis function 
is the location where the source and observation points coincide and the 
integrals involved in the integration process would be singular.  The 
analytical evaluation of the singular integrals using small argument 
approximation of the Hankel function as in (Gibson (2007)) would require 
that the length of the intervals involved in the inner analytical integration of 
the Hankel function to be as short as possible because the smaller the value 
of the Hankel function argument, the evaluation of the singular integrals 
would be much more accurate. From equation (8), (9), and (24), the value 
of , ,f    and | ' |   , will determine on how small the value of the 
argument | ' |k     will be for the Hankel function and this will determine 
the error contamination and therefore the accuracy in the numerical 
evaluation of singular integrals. The possible maximum value of | ' |    in 
the inner analytical integration of overlapping basis and testing function due 
to different testing point locations of the outer numerical integration for the 
pulse testing function is slightly less than 2h  whilst for the triangle and 
sinusoid testing function is slightly less than .h  This is because the width of 
overlapping basis and testing function for TT, TS, SS and ST is higher than 
the TP and SP method. 
 

TABLE 3: Mean relative error for hollow dielectric cylinder with 77.3 37.2r j    using 
Gauss quadrature 

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.0109 0.1023 0.1023 0.0137 0.1063 0.1062 

MFIE 0.0372 0.1519 0.1520 0.0341 0.1493 0.1494 
PMCHW 0.0394 0.1608 0.1609 0.0367 0.1583 0.1584 

Muller 0.0606 0.6030 0.6032 0.0643 0.6049 0.6087 
40 EFIE 0.0052 0.0502 0.0502 0.0066 0.0523 0.0523 

MFIE 0.0184 0.0820 0.0820 0.0166 0.0803 0.0803 
PMCHW 0.0196 0.0872 0.0872 0.0182 0.0856 0.0856 

Muller 0.0270 0.2402 0.2403 0.0291 0.2414 0.2427 
50 EFIE 0.0033 0.0284 0.0283 0.0038 0.0297 0.0296 

MFIE 0.0104 0.0488 0.0488 0.0093 0.0477 0.0477 
PMCHW 0.0113 0.0520 0.0520 0.0104 0.0509 0.0509 

Muller 0.0144 0.1260 0.1260 0.0157 0.1268 0.1274 
60 EFIE 0.0024 0.0176 0.0176 0.0025 0.0185 0.0185 

MFIE 0.0064 0.0314 0.0314 0.0057 0.0306 0.0306 
PMCHW 0.0071 0.0334 0.0334 0.0066 0.0326 0.0326 

Muller 0.0086 0.0758 0.0758 0.0095 0.0763 0.0767 
70 EFIE 0.0018 0.0117 0.0117 0.0018 0.0124 0.0124 

MFIE 0.0042 0.0213 0.0213 0.0037 0.0207 0.0207 
PMCHW 0.0048 0.0227 0.0227 0.0044 0.0222 0.0222 

Muller 0.0055 0.0496 0.0496 0.0062 0.0500 0.0503 
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TABLE 4: Mean relative error for hollow dielectric cylinder with 31.7 136.8r j    using 
Gauss quadrature 

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.041 0.2169 0.2169 0.0429 0.2191 0.219 

MFIE 0.0391 0.1988 0.1988 0.0377 0.1978 0.1979 
PMCHW 0.0399 0.2013 0.2014 0.0388 0.2004 0.2005 

Muller 0.0988 0.4852 0.4852 0.1004 0.4867 0.4868 
40 EFIE 0.0203 0.1129 0.1129 0.0214 0.114 0.114 

MFIE 0.0185 0.1064 0.1064 0.0177 0.1056 0.1057 
PMCHW 0.019 0.1078 0.1078 0.0183 0.1071 0.1071 

Muller 0.0484 0.2641 0.2642 0.0494 0.265 0.2651 
50 EFIE 0.0117 0.0666 0.0666 0.0125 0.0673 0.0673 

MFIE 0.01 0.0634 0.0634 0.0095 0.0628 0.0628 
PMCHW 0.0104 0.0642 0.0642 0.01 0.0637 0.0637 

Muller 0.0277 0.1555 0.1555 0.0284 0.1561 0.1561 
60 EFIE 0.0075 0.0428 0.0428 0.008 0.0433 0.0433 

MFIE 0.006 0.0408 0.0408 0.0056 0.0404 0.0404 
PMCHW 0.0062 0.0414 0.0414 0.006 0.041 0.041 

Muller 0.0175 0.0992 0.0992 0.018 0.0997 0.0997 
70 EFIE 0.0051 0.0293 0.0293 0.0055 0.0297 0.0297 

MFIE 0.0038 0.0278 0.0278 0.0036 0.0275 0.0275 
PMCHW 0.004 0.0282 0.0282 0.0039 0.0279 0.0279 

Muller 0.0119 0.0674 0.0674 0.0123 0.0678 0.0678 
 

TABLE 5: Mean relative error for hollow dielectric cylinder with 75 300r j    using 
Gauss quadrature 

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.11 0.515 0.5151 0.112 0.5181 0.5181 

MFIE 0.1031 0.4189 0.419 0.1017 0.4183 0.4184 
PMCHW 0.1038 0.4208 0.4209 0.1025 0.4202 0.4204 

Muller 0.2663 0.8673 0.8674 0.2678 0.8688 0.8689 
40 EFIE 0.0555 0.2806 0.2806 0.0566 0.2819 0.2819 

MFIE 0.0522 0.2484 0.2485 0.0513 0.2479 0.2479 
PMCHW 0.0526 0.2497 0.2498 0.0517 0.2492 0.2493 

Muller 0.1337 0.6048 0.6048 0.1346 0.6056 0.6057 
50 EFIE 0.0322 0.1704 0.1704 0.033 0.1712 0.1712 

MFIE 0.0299 0.1567 0.1567 0.0293 0.1562 0.1562 
PMCHW 0.0301 0.1575 0.1576 0.0295 0.1571 0.1571 

Muller 0.0769 0.3996 0.3997 0.0775 0.4002 0.4003 
60 EFIE 0.0205 0.1117 0.1117 0.0211 0.1122 0.1122 

MFIE 0.0187 0.1048 0.1048 0.0182 0.1044 0.1044 
PMCHW 0.0188 0.1053 0.1053 0.0184 0.105 0.105 

Muller 0.0486 0.2666 0.2666 0.0491 0.267 0.2671 
70 EFIE 0.014 0.0774 0.0774 0.0144 0.0778 0.0778 

MFIE 0.0124 0.0735 0.0735 0.0121 0.0731 0.0731 
PMCHW 0.0125 0.0738 0.0739 0.0122 0.0735 0.0736 

Muller 0.0329 0.1848 0.1848 0.0333 0.1851 0.1851 
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TABLE 6: Mean relative error for hollow dielectric cylinder with 77.3 37.2r j    using 
staircase approximation 

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.0313 0.0316 0.0315 0.0297 0.0305 0.0304 

MFIE 0.0355 0.0356 0.0356 0.0378 0.0379 0.0379 
PMCHW 0.0425 0.0405 0.0406 0.0449 0.0429 0.0430 

Muller 0.0953 0.0960 0.0960 0.0931 0.0938 0.0938 
40 EFIE 0.0218 0.0224 0.0223 0.0209 0.0219 0.0218 

MFIE 0.0285 0.0286 0.0286 0.0299 0.0299 0.0299 
PMCHW 0.0336 0.0322 0.0322 0.0350 0.0336 0.0336 

Muller 0.0714 0.0716 0.0716 0.0702 0.0704 0.0704 
50 EFIE 0.0167 0.0173 0.0173 0.0162 0.0170 0.0170 

MFIE 0.0238 0.0238 0.0238 0.0247 0.0247 0.0247 
PMCHW 0.0277 0.0266 0.0267 0.0286 0.0275 0.0276 

Muller 0.0570 0.0570 0.0570 0.0562 0.0562 0.0562 
60 EFIE 0.0135 0.0141 0.0141 0.0132 0.0139 0.0139 

MFIE 0.0204 0.0204 0.0204 0.0210 0.0210 0.0210 
PMCHW 0.0236 0.0227 0.0227 0.0242 0.0234 0.0234 

Muller 0.0474 0.0473 0.0473 0.0469 0.0468 0.0468 
70 EFIE 0.0113 0.0119 0.0119 0.0111 0.0118 0.0118 

MFIE 0.0178 0.0178 0.0178 0.0183 0.0183 0.0183 
PMCHW 0.0205 0.0198 0.0198 0.0210 0.0203 0.0203 

Muller 0.0406 0.0405 0.0405 0.0402 0.0401 0.0401 
 
TABLE 7: Mean relative error for hollow dielectric cylinder with 31.7 136.8r j    using 

staircase approximation 
 

n  Equation SP SS ST TP TS TT 
30 EFIE 0.0429 0.0413 0.0413 0.0406 0.0394 0.0393 

MFIE 0.0494 0.0494 0.0494 0.0524 0.0525 0.0525 
PMCHW 0.0535 0.0517 0.0517 0.0566 0.0548 0.0548 

Muller 0.092 0.0896 0.0896 0.0897 0.0874 0.0874 
40 EFIE 0.0321 0.0309 0.0308 0.0308 0.0297 0.0297 

MFIE 0.0369 0.037 0.037 0.0386 0.0387 0.0387 
PMCHW 0.0399 0.0386 0.0387 0.0416 0.0404 0.0404 

Muller 0.07 0.0681 0.0681 0.0687 0.0668 0.0668 
50 EFIE 0.0256 0.0246 0.0246 0.0247 0.0238 0.0238 

MFIE 0.0295 0.0295 0.0295 0.0306 0.0306 0.0306 
PMCHW 0.0318 0.0309 0.0309 0.0329 0.032 0.032 

Muller 0.0565 0.0549 0.0549 0.0556 0.054 0.054 
60 EFIE 0.0213 0.0204 0.0204 0.0207 0.0199 0.0199 

MFIE 0.0246 0.0246 0.0246 0.0253 0.0253 0.0253 
PMCHW 0.0264 0.0257 0.0257 0.0272 0.0264 0.0265 

Muller 0.0473 0.0459 0.0459 0.0467 0.0453 0.0453 
70 EFIE 0.0182 0.0175 0.0175 0.0178 0.0171 0.0171 

MFIE 0.021 0.0211 0.0211 0.0216 0.0216 0.0216 
PMCHW 0.0226 0.022 0.022 0.0232 0.0226 0.0226 

Muller 0.0407 0.0395 0.0395 0.0403 0.0391 0.0391 
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TABLE 8: Mean relative error for hollow dielectric cylinder with 75 300r j    using 
staircase approximation 

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.0632 0.0624 0.0623 0.0611 0.0605 0.0604 

MFIE 0.0718 0.0718 0.0718 0.0746 0.0747 0.0747 
PMCHW 0.0755 0.0737 0.0737 0.0784 0.0766 0.0767 

Muller 0.1347 0.1332 0.1331 0.1325 0.131 0.131 
40 EFIE 0.0475 0.0468 0.0468 0.0463 0.0457 0.0457 

MFIE 0.0535 0.0536 0.0535 0.0551 0.0552 0.0551 
PMCHW 0.0562 0.055 0.055 0.0578 0.0566 0.0566 

Muller 0.1035 0.1022 0.1022 0.1022 0.101 0.101 
50 EFIE 0.038 0.0374 0.0374 0.0372 0.0367 0.0366 

MFIE 0.0427 0.0427 0.0427 0.0437 0.0437 0.0437 
PMCHW 0.0447 0.0438 0.0438 0.0457 0.0448 0.0449 

Muller 0.0839 0.0829 0.0829 0.0831 0.082 0.082 
60 EFIE 0.0316 0.0311 0.0311 0.0311 0.0306 0.0306 

MFIE 0.0355 0.0355 0.0355 0.0362 0.0362 0.0362 
PMCHW 0.0371 0.0364 0.0364 0.0378 0.0371 0.0371 

Muller 0.0706 0.0697 0.0697 0.07 0.0691 0.0691 
70 EFIE 0.0271 0.0266 0.0266 0.0267 0.0263 0.0262 

MFIE 0.0304 0.0304 0.0304 0.0309 0.0309 0.0309 
PMCHW 0.0317 0.0311 0.0312 0.0323 0.0317 0.0317 

Muller 0.0609 0.0601 0.0601 0.0604 0.0596 0.0596 
 

Using smaller impedance matrix, the evaluation in the singular 
integrals would give the least error contamination when SP and TP method 
is used compared to the SS, ST, TS and TT method due to larger intervals 
of the inner analytical integration of the Hankel function when dealing with 
singular integrals. The error due to the small argument approximation is 
being amplified by the value of high permittivity which is used in the 
calculation of the wave number in the Hankel function. Therefore faster 
convergence is achieved when the SP method is used compared to the SS 
and ST method. Similarly, faster convergence is achieved when the TP 
method is used compared to the TS and TT method.  

 
The error contamination is much more pronounce in the Muller 

integral equation than any other integral equation when the SS, ST, TS and 
TT method is used compared to the SP and TP method because the value of 
relative permittivity is more abundant in the Muller integral equation than 
any other integral equation and this intensifies the error due to the small 
argument approximation when a high relative permittivity is used. 
Therefore, when dealing with high permittivity object, a smaller impedance 
matrix size that give less error contamination can be achieved with the SP 
and TP method than the SS, ST, TS and TT method under the Gauss 
quadrature technique. 
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The variation of outer layer surface magnetic current density mean 
relative error with samples/wavelength using staircase approximation 
technique is tabulated in Table 6, 7 and 8 by applying the same parameter 
value as in the Gauss quadrature technique at the frequency of 915 MHz. 
For the staircase approximation technique, the basis and testing function are 
approximated by intervals/pulses. The evaluation of singular integrals using 
the staircase approximation technique utilises the small argument 
approximation of the Hankel function for overlapping intervals/pulses of 
basis and testing function (Ayyildiz (2006)). The small argument 
approximation of the Hankel function is not used when the intervals/pulses 
do not overlap even though the basis and testing function overlaps. The 
length of the interval for the inner analytical integration of the Hankel 
function for overlapping basis and testing intervals/pulses is maintained to 
be the same for all the different basis and testing function. Therefore, the 
effect of high permittivity does not greatly affect the difference in the 
convergence due to different basis and testing function.  
 

In both computing techniques, we have utilised the small argument 
approximation of the Hankel function in the evaluation of singular integrals. 
For singular and non-singular integrals, the same number of computation 
points is used for both computing techniques (which is the quadrature 
points for the Gauss quadrature technique and intervals/pulses for the 
staircase approximation technique). The error contamination due to the 
small argument approximation of the Hankel function is not negligible 
when a smaller impedance matrix size is required for high permittivity 
scatterers. Although the error of numerical solution due to the staircase 
approximation technique deteriorates when a smaller impedance matrix size 
is required for high permittivity object, the difference in the error 
contamination due to different basis and testing function is not as 
distinguishable as in the Gauss quadrature technique. 

 
For high permittivity object, it takes higher samples/wavelength for 

the error due to Gauss quadrature to be less than the error due to staircase 
approximation when the SS, ST, TS and TT method is used compared to the 
SP and TP method. This implies that a larger matrix size is required by the 
SS, ST, TS and TT method than the SP and TP method for the Gauss 
quadrature to be more accurate than the staircase approximation. As a 
result, for high permittivity objects, the memory requirements needed for 
the Gauss quadrature error to be less than the staircase approximation error 
would be higher when the SS, ST, TS and TT method is used compared to 
the SP and TP method. 
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This indicate that different basis and testing function affect the 
efficiency of different numerical implementations in terms of matrix size 
when dealing with high permittivity objects. From the numerical 
experimentation, it can be deduced that when a smaller impedance matrix 
size is desired for large size high permittivity object, the  SS, ST, TS and 
TT method give higher amount of error contamination for a higher number 
of integral equations compared to the SP and TP method when the Gauss 
quadrature technique is used. On the other hand, it can be deduced that the 
error contamination due to different testing function is almost similar for a 
higher number of integral equations using the staircase approximation 
technique when a smaller impedance matrix size is required for large size 
high permittivity object. 

 
The TE scattering by a dielectric coated impedance cylinder with kb 

= 4 and ka = 3 (Kishk (1991)) at the frequency of 300 MHz is considered. 
For the outer layer, εr  = 4 and µr = 1. Different sets of value are selected for 
the inner core. Numerical data for εr  = 8-j16 and µr = 2-j4 (Kishk (1991)) is 
tabulated in Table 9. Numerical data for εr  = 12-j24 and µr = 3-j6 is 
tabulated in Table 10. Numerical data for εr  = 16-j32 and µr = 4-j8 is 
tabulated in Table 11. For the different sets of εr and µr used, η1 = 0.25 
where it is used in the impedance boundary condition (IBC) and numerical 
data is tabulated in Table 12. The IBC is used to simplify the scattering 
problem when the relative permittivity scatterer is large (Peterson, 1998). In 
order for the IBC to be valid, the fields must decay within the IBC region 
which must be sufficiently lossy where the absorption and attenuation of 
waves is influenced by the loss factor (Peterson, 1998). 

 
The variation of outer layer magnetic current density mean relative 

error with samples per wavelength is tabulated in Table 9, 10, 11 and 12. 
The samples/wavelength, n used is 30, 40, 50, 60 and 70 samples/ λ0 where 
λ0 is the free space wavelength. This corresponds to the MoM impedance 
matrix size of 420 by 420, 560 by 560, 700 by 700, 840 by 840 and 980 by 
980 under the exact boundary condition (EBC) whilst under the impedance 
boundary condition (IBC) this corresponds to the impedance matrix size of 
330 by 330, 440 by 440, 550 by 550, 660 by 660 and 770 by 770 by taking 
the overall surface electric and magnetic current into account. Similar 
samples/wavelength is applied on the outer radius and inner radius of the 
dielectric coated impedance cylinder. The same subroutine has been used in 
the calculation of the generic integrals under the exact and impedance 
boundary conditions. 
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TABLE 9: Mean relative error for dielectric coated impedance cylinder with 
8 16r j   and 2 4r j   using Gauss quadrature and EBC  

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.018 0.0955 0.0956 0.0212 0.0983 0.099 

MFIE 0.0191 0.092 0.0921 0.0165 0.0894 0.0894 
PMCHW 0.0034 0.0083 0.0083 0.0054 0.0102 0.0104 

Muller 0.1532 0.6713 0.6715 0.1545 0.6747 0.6749 
40 EFIE 0.0091 0.0474 0.0474 0.0108 0.0488 0.0492 

MFIE 0.0098 0.047 0.047 0.0084 0.0454 0.0454 
PMCHW 0.0027 0.0024 0.0024 0.0037 0.0036 0.0038 

Muller 0.0771 0.3741 0.3742 0.0777 0.3755 0.3756 
50 EFIE 0.0057 0.0273 0.0273 0.0067 0.0282 0.0284 

MFIE 0.006 0.0275 0.0275 0.0052 0.0265 0.0265 
PMCHW 0.0024 0.0019 0.0019 0.003 0.0026 0.0026 

Muller 0.0449 0.2276 0.2277 0.0453 0.2284 0.2284 
60 EFIE 0.0041 0.0173 0.0174 0.0048 0.0179 0.0181 

MFIE 0.0043 0.0177 0.0177 0.0037 0.017 0.017 
PMCHW 0.0023 0.002 0.002 0.0027 0.0025 0.0024 

Muller 0.0289 0.1486 0.1486 0.0292 0.149 0.149 
70 EFIE 0.0033 0.0118 0.0118 0.0038 0.0122 0.0124 

MFIE 0.0034 0.0122 0.0122 0.003 0.0117 0.0117 
PMCHW 0.0023 0.0021 0.0021 0.0025 0.0024 0.0024 

Muller 0.0201 0.1025 0.1025 0.0203 0.1028 0.1028 
 

TABLE 10: Mean relative error for dielectric coated impedance cylinder with 
12 24r j   and 3 6r j   using Gauss quadrature and EBC  

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.048 0.2558 0.256 0.0512 0.2591 0.2599 

MFIE 0.0485 0.2301 0.2302 0.0457 0.228 0.2281 
PMCHW 0.0046 0.0607 0.0607 0.0069 0.0627 0.063 

Muller 0.5226 1.6528 1.6531 0.5251 1.6596 1.6598 
40 EFIE 0.0236 0.1272 0.1272 0.0254 0.1288 0.1292 

MFIE 0.0245 0.1208 0.1208 0.0229 0.1194 0.1194 
PMCHW 0.0027 0.0159 0.0159 0.0039 0.0171 0.0172 

Muller 0.2815 1.0906 1.0908 0.2825 1.0934 1.0935 
50 EFIE 0.0137 0.0739 0.0739 0.0148 0.0749 0.0751 

MFIE 0.0144 0.0721 0.0721 0.0134 0.0711 0.0711 
PMCHW 0.0024 0.006 0.006 0.0031 0.0067 0.0068 

Muller 0.1684 0.7376 0.7377 0.1689 0.7389 0.739 
60 EFIE 0.0088 0.0473 0.0473 0.0096 0.0479 0.0481 

MFIE 0.0094 0.0468 0.0468 0.0087 0.0461 0.0461 
PMCHW 0.0023 0.0031 0.0031 0.0027 0.0036 0.0036 

Muller 0.1091 0.5151 0.5151 0.1094 0.5158 0.5158 
70 EFIE 0.0062 0.0323 0.0323 0.0068 0.0328 0.0329 

MFIE 0.0067 0.0324 0.0324 0.0062 0.0318 0.0318 
PMCHW 0.0023 0.0022 0.0022 0.0025 0.0025 0.0026 

Muller 0.0752 0.3715 0.3715 0.0754 0.3719 0.3719 
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TABLE 11: Mean relative error for dielectric coated impedance cylinder with 
16 32r j   and 4 8r j   using Gauss quadrature and EBC  

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.0968 0.5234 0.5238 0.1002 0.5276 0.5285 

MFIE 0.0942 0.4294 0.4296 0.0915 0.4281 0.4283 
PMCHW 0.0111 0.24 0.2402 0.0134 0.2425 0.2429 

Muller 1.0955 2.5076 2.5079 1.1 2.5177 2.5177 
40 EFIE 0.0479 0.257 0.2571 0.0497 0.2588 0.2593 

MFIE 0.048 0.2311 0.2312 0.0464 0.2299 0.23 
PMCHW 0.004 0.0627 0.0627 0.0053 0.0638 0.0639 

Muller 0.6528 1.9083 1.9086 0.6545 1.9127 1.9129 
50 EFIE 0.0277 0.1491 0.1491 0.0288 0.1501 0.1504 

MFIE 0.0282 0.1402 0.1403 0.0272 0.1393 0.1394 
PMCHW 0.0026 0.0223 0.0223 0.0033 0.023 0.023 

Muller 0.4128 1.4364 1.4366 0.4136 1.4386 1.4387 
60 EFIE 0.0176 0.0957 0.0957 0.0184 0.0964 0.0965 

MFIE 0.0182 0.0922 0.0922 0.0175 0.0916 0.0916 
PMCHW 0.0023 0.0098 0.0098 0.0027 0.0103 0.0103 

Muller 0.2759 1.0862 1.0863 0.2764 1.0874 1.0875 
70 EFIE 0.0121 0.0657 0.0657 0.0126 0.0662 0.0663 

MFIE 0.0126 0.0643 0.0643 0.0121 0.0638 0.0638 
PMCHW 0.0023 0.0052 0.0052 0.0025 0.0056 0.0056 

Muller 0.1934 0.831 0.8311 0.1937 0.8317 0.8318 
 

TABLE 12: Mean relative error for dielectric coated impedance cylinder using Gauss 
quadrature and IBC  

 
n  Equation SP SS ST TP TS TT 
30 EFIE 0.0118 0.0109 0.0109 0.0093 0.0094 0.0094 

MFIE 0.0113 0.0115 0.0115 0.0087 0.0092 0.0092 
PMCHW 0.0112 0.0114 0.0115 0.0086 0.0089 0.0089 

Muller 0.0108 0.0099 0.0099 0.0082 0.0087 0.0088 
40 EFIE 0.0117 0.0104 0.0104 0.0103 0.0092 0.0092 

MFIE 0.0114 0.0111 0.0111 0.01 0.0096 0.0096 
PMCHW 0.0113 0.0113 0.0113 0.0099 0.0098 0.0098 

Muller 0.0112 0.0102 0.0102 0.0097 0.009 0.0089 
50 EFIE 0.0117 0.0109 0.0109 0.0108 0.0101 0.01 

MFIE 0.0115 0.0113 0.0113 0.0106 0.0103 0.0103 
PMCHW 0.0115 0.0114 0.0114 0.0105 0.0105 0.0104 

Muller 0.0114 0.0108 0.0108 0.0104 0.01 0.0099 
60 EFIE 0.0117 0.0112 0.0112 0.0111 0.0106 0.0105 

MFIE 0.0116 0.0114 0.0114 0.0109 0.0107 0.0107 
PMCHW 0.0115 0.0115 0.0115 0.0109 0.0108 0.0108 

Muller 0.0115 0.0112 0.0112 0.0108 0.0106 0.0105 
70 EFIE 0.0117 0.0113 0.0113 0.0113 0.0109 0.0109 

MFIE 0.0116 0.0115 0.0115 0.0111 0.011 0.011 
PMCHW 0.0116 0.0116 0.0116 0.0111 0.0111 0.0111 

Muller 0.0115 0.0114 0.0114 0.0111 0.0109 0.0109 
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Under the exact boundary condition (EBC), the EBC is applied on 
the outer layer and the core of the dielectric coated impedance cylinder 
whilst under the impedance boundary condition (IBC), the IBC is applied 
only on the inner core and the EBC is applied on the outer layer of the 
dielectric coated impedance cylinder (Kishk (1991)). Therefore, the 
governing integral equations using the EBC and IBC are only different at 
the core of the dielectric coated impedance cylinder. 

 
When the EBC is utilised for the dielectric coated impedance 

cylinder, the relative permittivity and permeability of the core is used in the 
calculation of the wave number of the Hankel function and as a result, the 
SP and TP method give faster convergence than the SS, ST, TS and TT 
method. Under the EBC, the difference in the convergence due to different 
basis and testing function for the PMCHW integral equation is not as 
distinguishable as the EFIE and MFIE. This is may be attributed from the 
equation governing the interior and exterior region is separated in the EFIE 
and MFIE whereas it is coupled in the PMCHW integral equation.  

 
Another factor this is that for the PMCHW integral equation, only 2 

governing equations on the core of the dielectric coated impedance cylinder 
under the EBC is affected by the error due the small argument 
approximation of Hankel function instead of 4 governing equations on the 
core and outer layer as in the case of the high permittivity hollow dielectric 
cylinder considered previously in Table 3, 4, and 5 since the location of 
high permittivity is in the core and not on the outer layer of the dielectric 
coated impedance cylinder.  

 
Though the equation governing the interior and exterior region is 

coupled in the Muller integral equation, the value of the relative 
permittivity and permeability is abundant in the integral equation that 
intensifies the error due to the small argument approximation of the Hankel 
function. Therefore, the difference in the convergence due to different basis 
and testing function for the Muller integral equation is more distinguishable 
compared to the PMCHW integral equation when the EBC is used. 

 
When the IBC is utilised, the relative permittivity and permeability 

of the core is not used in the calculation of the wave number of the Hankel 
function and it is only used for the calculation of the surface impedance, 
which is given by equation (15). Therefore, the error due to the small 
argument approximation of Hankel function is much more pronounced 
when the EBC is used compared to the IBC. As a result, the difference in 
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the convergence due to different basis and testing function under the IBC is 
not as distinguishable as under the EBC. This is clearly seen for the Muller 
integral equation compared to any other integral equation because the error 
due to the small argument approximation of the Hankel function is 
intensified by the abundant relative permittivity and permeability when the 
EBC is used whilst under the IBC, the difference in the convergence due to 
different basis and testing function for the Muller integral equation is 
almost indistinguishable.  

 
The convergence due to different basis and testing function under 

the IBC for highly lossy object is not as distinguishable as under the EBC 
for a higher number of integral equations even though the SS, ST, TS and 
TP method converge slower than the SP and TP method for a higher 
number of integral equations under the EBC. This indicate that any of the 
basis and testing functions can be selected under the IBC although the SP 
and TP method converge faster than the SS, ST, TS and TT method under 
the EBC. The SS, ST, TS and TT method require higher 
samples/wavelength than the SP and TP method for the error due to the 
EBC to be less than the error due to the IBC. As a result, the matrix size and 
computing time required for the EBC error to be less than the IBC error 
would be higher when the SS, ST, TS and TT method is used compared to 
the SP and TP method. 

 
The TM scattering from hollow dielectric cylinder with typical 

outer and inner radius b = (0.0819*2/π) m and a = (0.0819*2*0.6/π) m is of 
smaller size and with typical outer and inner radius b = (0.0819*2*2/π) m 
and a = (0.0819*2*2*0.6/π) m is of larger size, in dielectric media with εr = 
54.2-j61.3 (Yifen, et al., 2003) and εr = 75.7-j67.1 at 915 MHz are 
considered (Ikediala et al., 2002). The samples per wavelength of 50, 60, 
70, 80 and 90 samples/ λ0 where  λ0  is the free space wavelength 
corresponds to the MoM impedance matrix size of 160 by 160, 192 by 192, 
224 by 224, 256 by 256 and 288 by 288 respectively for the smaller size 
object whereas for the larger size object this corresponds to the impedance 
matrix size of 320 by 320, 384 by 384, 448 by 448, 512 by 512 and 576 by 
576 respectively. For the smaller size object, the impedance matrix size of 
160 by 160, 192 by 192, 224 by 224, 256 by 256 and 288 by 288 
corresponds to 25600, 36864, 50176, 65536 and 82944 matrix elements 
respectively. For the larger size object, the impedance matrix size of 320 by 
320, 384 by 384, 448 by 448, 512 by 512 and 576 by 576 corresponds to 
102400, 147456, 200704, 262144 and 331776 matrix elements respectively. 
The variation of outer layer magnetic current density mean relative error 
with samples per wavelength is tabulated in Table 13, 14, 15 and 16. 
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TABLE 13: Mean relative error for hollow dielectric cylinder with 54.2 61.3r j    using 
Gauss quadrature with smaller size 

 
n  Equation SP SS ST TP TS TT 
50 EFIE 0.0074 0.0343 0.0343 0.0085 0.0356 0.0356 

MFIE 0.0088 0.0373 0.0373 0.0077 0.0362 0.036 
PMCHW 0.0086 0.0404 0.0404 0.0076 0.0394 0.0392 

Muller 0.0249 0.1739 0.174 0.026 0.1757 0.1754 
60 EFIE 0.0046 0.0215 0.0215 0.0054 0.0224 0.0224 

MFIE 0.0062 0.0242 0.0242 0.0054 0.0234 0.0233 
PMCHW 0.0058 0.0261 0.0261 0.0051 0.0254 0.0253 

Muller 0.0147 0.1052 0.1053 0.0155 0.1064 0.1062 
70 EFIE 0.0031 0.0145 0.0145 0.0036 0.0151 0.0151 

MFIE 0.0046 0.0167 0.0167 0.004 0.0161 0.016 
PMCHW 0.0042 0.018 0.0179 0.0037 0.0174 0.0173 

Muller 0.0093 0.0692 0.0692 0.0099 0.07 0.0698 
80 EFIE 0.0022 0.0102 0.0102 0.0026 0.0107 0.0107 

MFIE 0.0036 0.0121 0.0121 0.0032 0.0117 0.0116 
PMCHW 0.0032 0.0129 0.0129 0.0028 0.0125 0.0124 

Muller 0.0062 0.0481 0.0481 0.0066 0.0488 0.0486 
90 EFIE 0.0016 0.0075 0.0075 0.0019 0.0079 0.0079 

MFIE 0.0029 0.0091 0.0091 0.0026 0.0087 0.0087 
PMCHW 0.0025 0.0097 0.0097 0.0022 0.0093 0.0093 

Muller 0.0043 0.035 0.035 0.0046 0.0355 0.0354 
 
TABLE 14: Mean relative error for hollow dielectric cylinder with 54.2 61.3r j    using 

Gauss quadrature with larger size 
 

n  Equation SP SS ST TP TS TT 
50 EFIE 0.0064 0.0364 0.0364 0.0076 0.0377 0.0377 

MFIE 0.0098 0.0354 0.0353 0.0087 0.0342 0.0341 
PMCHW 0.0064 0.0352 0.0352 0.0054 0.0341 0.0341 

Muller 0.0514 0.35 0.35 0.0523 0.3513 0.3514 
60 EFIE 0.0039 0.0228 0.0228 0.0047 0.0237 0.0237 

MFIE 0.0072 0.023 0.0229 0.0064 0.0221 0.0221 
PMCHW 0.0042 0.0226 0.0226 0.0035 0.0218 0.0218 

Muller 0.0307 0.2148 0.2148 0.0313 0.2156 0.2157 
70 EFIE 0.0025 0.0153 0.0153 0.0031 0.016 0.016 

MFIE 0.0056 0.0159 0.0159 0.0051 0.0152 0.0152 
PMCHW 0.0029 0.0154 0.0154 0.0024 0.0148 0.0148 

Muller 0.0197 0.142 0.142 0.0201 0.1426 0.1426 
80 EFIE 0.0017 0.0108 0.0108 0.0022 0.0113 0.0113 

MFIE 0.0046 0.0116 0.0115 0.0042 0.0111 0.011 
PMCHW 0.0022 0.011 0.011 0.0018 0.0106 0.0106 

Muller 0.0133 0.0992 0.0992 0.0136 0.0996 0.0996 
90 EFIE 0.0013 0.0079 0.0079 0.0016 0.0083 0.0083 

MFIE 0.0039 0.0087 0.0087 0.0035 0.0084 0.0083 
PMCHW 0.0017 0.0082 0.0082 0.0014 0.0078 0.0078 

Muller 0.0093 0.0722 0.0722 0.0095 0.0725 0.0725 
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TABLE 15: Mean relative error for hollow dielectric cylinder with 75.7 67.1r j    using 
Gauss quadrature with smaller size 

 
n  Equation SP SS ST TP TS TT 
50 EFIE 0.0076 0.0442 0.0442 0.0088 0.0456 0.0456 

MFIE 0.0116 0.0513 0.0512 0.0104 0.0502 0.05 
PMCHW 0.0113 0.0532 0.0532 0.0101 0.0521 0.0519 

Muller 0.03 0.2252 0.2252 0.0313 0.2271 0.2268 
60 EFIE 0.0046 0.0277 0.0277 0.0054 0.0287 0.0287 

MFIE 0.0079 0.0334 0.0333 0.0071 0.0326 0.0325 
PMCHW 0.0076 0.0346 0.0345 0.0068 0.0338 0.0337 

Muller 0.0177 0.1348 0.1348 0.0185 0.136 0.1358 
70 EFIE 0.003 0.0186 0.0186 0.0036 0.0193 0.0193 

MFIE 0.0058 0.023 0.023 0.0052 0.0225 0.0224 
PMCHW 0.0054 0.0238 0.0238 0.0048 0.0232 0.0231 

Muller 0.0111 0.0881 0.0881 0.0117 0.0889 0.0888 
80 EFIE 0.0021 0.0131 0.0131 0.0025 0.0136 0.0136 

MFIE 0.0045 0.0166 0.0166 0.004 0.0162 0.0161 
PMCHW 0.0041 0.0172 0.0171 0.0036 0.0167 0.0166 

Muller 0.0073 0.0611 0.0611 0.0078 0.0617 0.0617 
90 EFIE 0.0015 0.0095 0.0095 0.0018 0.01 0.01 

MFIE 0.0036 0.0125 0.0125 0.0032 0.0121 0.0121 
PMCHW 0.0032 0.0128 0.0128 0.0028 0.0125 0.0124 

Muller 0.005 0.0443 0.0443 0.0054 0.0448 0.0447 
 
TABLE 16: Mean relative error for hollow dielectric cylinder with 75.7 67.1r j    using 

Gauss quadrature with larger size 
 

n  Equation SP SS ST TP TS TT 
50 EFIE 0.0081 0.0485 0.0485 0.0095 0.0498 0.0498 

MFIE 0.0118 0.0465 0.0464 0.0106 0.0452 0.0452 
PMCHW 0.0084 0.046 0.046 0.0073 0.0449 0.0449 

Muller 0.075 0.5207 0.5208 0.076 0.5223 0.5225 
60 EFIE 0.0049 0.0305 0.0305 0.0058 0.0314 0.0314 

MFIE 0.0084 0.0302 0.0302 0.0076 0.0293 0.0293 
PMCHW 0.0054 0.0296 0.0296 0.0046 0.0288 0.0288 

Muller 0.0448 0.317 0.317 0.0455 0.3179 0.318 
70 EFIE 0.0032 0.0205 0.0205 0.0038 0.0212 0.0212 

MFIE 0.0064 0.0209 0.0209 0.0059 0.0202 0.0202 
PMCHW 0.0038 0.0203 0.0203 0.0032 0.0197 0.0197 

Muller 0.0288 0.2082 0.2082 0.0293 0.2088 0.2089 
80 EFIE 0.0022 0.0145 0.0145 0.0027 0.015 0.015 

MFIE 0.0052 0.0151 0.0151 0.0047 0.0146 0.0146 
PMCHW 0.0028 0.0145 0.0145 0.0023 0.014 0.014 

Muller 0.0195 0.1448 0.1448 0.0198 0.1452 0.1452 
90 EFIE 0.0015 0.0106 0.0106 0.0019 0.011 0.011 

MFIE 0.0043 0.0114 0.0114 0.004 0.011 0.011 
PMCHW 0.0021 0.0108 0.0108 0.0018 0.0104 0.0104 

Muller 0.0137 0.1051 0.1051 0.014 0.1054 0.1054 
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For the high permittivity hollow dielectric cylinder, the different 
integral equations are governed by 2 surface electric current densities and 2 
surface magnetic current densities on the outer and inner layer respectively. 
Therefore, 3 integral equations in the EFIE and MFIE and also 4 integral 
equations in the PMCHW and Muller integral equation is contaminated by 
the error due to the small argument approximation of the Hankel function. 
The inner layer surface current densities is affected by the error due to the 
small argument approximation of the Hankel function which is intensified 
by the high relative permittivity and this slows down the convergence of the 
outer layer surface current densities.  

 
In addition to that, the outer layer surface current densities is also 

affected by the error due to the small argument approximation of the 
Hankel function that is intensified by the high relative permittivity and this 
also slows down the convergence of the outer layer surface current density. 
As a result, the mesh element size has to be small by taking a significantly 
large number of segmentation for the outer and inner layer of the hollow 
dielectric cylinder with larger size to minimize the error due to small 
argument approximation of the Hankel function. By increasing both the 
outer and inner radius of the high permittivity hollow dielectric cylinder, 
the impedance matrix size and therefore the number of impedance matrix 
elements utilised had to be increased to minimize the error of the numerical 
solution. 

 
The numerical results imply that the larger the size of the hollow 

dielectric cylinder by increasing the magnitude of the inner and outer 
radius, the SP and TP method provide faster convergence than the SS, ST, 
TS and TT method with a higher difference in the number of matrix 
elements or matrix size between the SS, ST and SP method and also 
between TS, TT and TP method to achieve an error less than 0.01. When 
the size of the high permittivity hollow dielectric cylinder is smaller by 
having a smaller inner and outer radius, the SP and TP method still provide 
faster convergence than the SS, ST, TS and TT method with smaller 
difference in the number of matrix elements between SS, ST and SP method 
and also between TS, TT and TT method to achieve and error less than 0.01 
is observed. This indicate that the efficiency of the numerical solution in 
terms of memory requirements denoted by the number of matrix elements 
or matrix size to achieve an error less than 0.01 for the SS, ST, TS and TT 
method would be significantly different than the SP and TP method as the 
size of the high permittivity object is increased. 
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It can be deduced that the amount of difference in the number of 
impedance matrix elements or matrix size between SS, ST and SP method 
and also between TS, TT and TP method to achieve an error less than 0.01 
depends on the size of the high permittivity object. From the numerical 
experimentation, a larger difference in the efficiency in terms of the number 
of matrix elements or matrix size is observed between the SS, ST and SP 
method and also between the TS, TT and TP method to achieve an error 
less than 0.01 for larger size high permittivity object compared to the object 
with smaller size. When the size of the high permittivity object is smaller, 
this leads to a smaller difference in the efficiency in terms of impedance 
matrix size or number of impedance matrix elements between the SS, ST 
and SP method and also between the TS, TT and TP method to achieve an 
error less than 0.01. Higher difference in the number of matrix elements or 
matrix size in minimizing the error between the different basis and testing 
function denotes a higher difference in the memory usage in minimizing the 
error of the numerical solution. 

 
 

6.   CONCLUSION 
Different basis and testing function is applied on different integral 

equations where  different numerical implementation, boundary conditions 
and different sizes is considered. The convergence and accuracy of different 
integral equations using different testing function is compared when the 
integral equations are applied on two dimensional dielectric objects. 
Numerical results for the MoM surface integral equation using different 
basis and testing function on dielectric objects indicate that different 
computing technique and different boundary conditions can result in 
different convergence rate and different error contamination when different 
basis and testing function is used as the MoM impedance matrix size is 
reduced to save memory requirements and computing time.  
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