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ABSTRACT 

Recently the Diophantine Equation Hard Problem (DEHP) was proposed. It is 
utilized to design a standard identification scheme model. Since the computation 
involves only simple addition and multiplication steps, the efficiency and the time 
cost are greatly improved as compared to the existing identification schemes. In this 

paper, we propose a zero knowledge identification scheme based upon the DEHP. 
With the assumption such that DEHP is intractable, we provide the security analysis 
on the impersonation against non-adaptive passive attack (imp-pa) and show that our 
new proposed scheme is more desirable due to high efficiency in terms of time 
computation. 
 
Keywords: Diophantine Equation Hard Problem, standard identification scheme 
model, impersonation against non-adaptive passive attack. 

 

1. INTRODUCTION 

An identification scheme, involves two parties comprising of the 
Prover and the Verifier where the Prover is trying to identify himself to the 

Verifier in such a way that no important information (private message) is 

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES 
 

Journal homepage: http://einspem.upm.edu.my/journal 



B. C. Tea, M. R. K. Ariffin & J. J. Chin 

 

88 Malaysian Journal of Mathematical Sciences 
 

relayed throughout the communication (zero knowledge). The typical 
identification scheme consists of three canonical moves, where the Prover 

sends the “commitment” to the Verifier; the Verifier will then send the 

“challenge” to the Prover; Prover “response” the challenge to the Verifier 
and finally Verifier accepts or rejects by verifying Prover’s response.  

 

The goal of the adversary in an identification scheme is to 
impersonate or to attack the scheme in such a way that it behaves as a 

cheating prover and succeeds in identifying itself to the honest verifier. 

With the existence of adversary that attempts to impersonate, three common 
attacks are usually considered, passive, active and concurrent attacks. 

Hence, security against these attacks becomes a major concern in 

cryptography, where analysis and establishment of the identification 
schemes are widely researched.  
 

 Existing identification schemes are based on specific number 

theoretic assumptions, such as RSA assumption in Guillou-Quisquater (GQ) 

identification; and also Discrete Log (DLOG) assumption in Schnorr 

identification schemes. These schemes provide security only under 
impersonation against passive attack, and were developed post Fiat-Shamir. 

The GQ scheme, which is one of the Fiat-Shamir’s variant, utilized the 

hardness of RSA problem, (i.e. solving e-th root problem). Schnorr’s 
scheme on the other hand, relies on the Discrete Log assumption, which is 

the hardness of solving the discrete log problem. Bellare and Palacio in 

their paper proposed the Reset Lemma together with the assumption of 

One-More-RSA Inversion Problem (Bellare (2003)) and One-More-
Discrete-Log Problem (OMDLP) (Koblitz (2008)) which successfully 

provides security under impersonation of active and concurrent attack of 

GQ and Schnorr’s schemes, respectively.   
  

 Other than the hardness problem of number theoretic assumptions, 
Stern (Stern (1996)) had proposed the identification scheme based on the 

worst-case hardness of the lattice problem, in which the author managed to 

provide the security against impersonation under passive attack. After a few 
years, with the improvement and modification made by Kawachi (2008), 

Stern’s identification scheme was proven to be provably secure against the 

concurrent attack - under the assumption of the worst-case hardness of the 

lattice problem.  
 

 There are also identification schemes which are established based 
on problems surrounding multivariate public key cryptography schemes 

such as in (Pointcheval (1995)) and (Pointcheval (2003)). The most recent 

identification scheme is by Sakumoto et al. in which they have proposed the 
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identification scheme based on multivariate quadratic polynomial 

(Sakumoto (2011)). It is also proven to be secure by the authors. The 
security of their scheme relies on the intractability of the multivariate 

quadratic polynomial under the assumption of the existence of non-

interactive commitment. This identification scheme with this assumption 

guarantees security under impersonation of active and passive attacks, even 
though the protocol is repeated in parallel. Sakumoto et al. also showed that 

their scheme is more efficient than other schemes utilizing the same 

multivariate function with different problems as stated in Sakumoto’s one 
(Sakumoto (2011)). 

 

 In this paper, we propose a new identification scheme based on the 

Diophantine Equation Hard Problem (Ariffin (2012)). We show that our 

identification scheme is secure against impersonation under non-adaptive 
passive attacks in the standard model. Our identification scheme based on 

DEHP is desirable since it increases the runtime efficiency comparing other 

schemes as it relies only on simple mathematical operations of addition and 

multiplication.  
 

The layout of the paper is as follows. In Section 2, we will first 
review the definition of the DEHP and provide tighter parameter selection 

within the definition (in comparison to the original definition). We then 

describe the Bivariate Function Hard Problem (BFHP) which is a 2 
parameter situation for the DEHP (Ariffin (2013)). Proofs will be given on 

the uniqueness and intractability of the BFHP. We will also review in this 

section, identification schemes in the standard model, followed by the 

security model of the schemes. In Section 3 we propose the standard model 
of our identification scheme, followed by the security analysis in which 

proofs of security against impersonation under non-adaptive passive attack 

are given. In Section 4, we provide efficiency analysis and comparison of 
the schemes. In Section 5, the conclusion about our identification scheme is 

made. 
 

2. PRELIMINARIES 

2.1 Diophantine Equations Hard Problem (DEHP) 

We revisited the definition by Ariffin (2012) and further enhance the 

definition as follows: 
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Definition 1 

Let � � ∑ �����
��	  be a summation where ��  are unknown integers which 

are 
-bits,  �� is a public sequence of integers and ��
��� , ��� � 1 

where  � � � which are �-bits and at minimum 
 � � � 128. We define the 

DEHP is solved when � is prf-solved. That is, the preferred integer set ��� is 

found from the set of all possible integers �� such that  � � ∑ �����
��	 .  

Remark 1 

For the purpose of this research we will take � � 2. Hence, we can also 

address it as the Bivariate Function Hard Problem (BFHP). The following is 

a description of the BFHP with chosen parameter structures.  

 

Proposition 1 (Sakumoto et al. (2011)). 

Let ���	, �� , … , ��  be a multivariate one-way function that maps �: "� #
"��$%&,�$'	�

( .Let �	and �� be such functions (either identical or non-

identical) such that �	 � ���	, ��, … , �� , �� � ��)	, )�, … , )� ,  and 

��
��	, �� � 1. Let *, + , �2-'	 , 2- � 1 . Now, suppose we have the 

bivariate function .�*, + � �	* / ��+. If at minimum 
 � � � 1 � 129, 

it is infeasible to determine �*, +  from .�*, + . Furthermore, �*, + is 

unique for .�*, +  with high probability. 

 

Proof. 

We begin by proving that �*, + is unique for each .�*, +  with high 

probability. Assume there exists *	 � *� and +	 � +�  such that 
 

�	*	 / ��+	 � �	*� / ��+�. 

 
 We will then have 

� � +	 � +� � �	�*	 � *� 
��

 

 

Since ��
��	 , �� � 1and �� 1 2� , then the probability that � is an 

integer is 2'� . 

 

Next we proceed to prove that to prf -solve the Diophantine equation given 

by .�*, +  is infeasible. The general solution for .�*, +  is given by 

 

* � *2 / ��3 
 



An Efficient Identification Scheme in Standard Model Based on the  

Diophantine Equation Hard Problem 

 

                                Malaysian Journal of Mathematical Sciences                                           91 
 

and 

+ � +2 � �	3 
 

for some integer 3. To find * within the stipulated interval �2-'	, 2- � 1  

we have to find the integer 3 such that 2-'	 4 * 4 2- � 1.  

That is, 

2-'	 � *2
��

4 3 4 2- � 1 � *2
��

. 
 

 Then the difference between the upper and the lower bound is 

approximate 2-'�'�. Since
 � � � 1 � 129, then 
 � � � 2 � 128. 

Hence the difference is very large and finding the correct t is infeasible. 

This is also the same scenario for +.6 

 

Definition 2 (Ariffin (2013)) 

We say that the BFHP is hard to be prf-solved if for all probabilistic 

polynomial time algorithm there exist a negligible function 7��  such that 

89:;�<8=>?@A � 1B C 7�� . 
 

2.2 Identification Scheme in Standard Model 

An identification scheme in a standard model consists of three probabilistic 

polynomial time algorithms�DE).E�, 89F+E, GE9�H) which are defined as 

follows: 
 

1. KeyGen: The Simulator I on input of security parameter1�, generates 

and publishes the master public key,  
JK and keeps the master secret 

key,  
LK to itself.  
 

2. Prove: An algorithm that outputs the Commitment as the initial step of 

identification and responses to the corresponding Challenge from the 

Verifier. 
3. Verify: A deterministic verification algorithm that first outputs 

challenge to the Prover and takes an input as the purported response and 

the public key. It outputs either 0 or 1. 

2.3 Security Model of Identification Scheme 

The security of the identification schemes remains on the probability of the 
impersonation by the adversary. In other words, after certain interactions of 

the adversary with the honest verifier, the adversary succeeds in the 
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impersonation attempt and is accepted by the verifier with non-negligible 
probability.  
 

In analyzing the security of the identification schemes, we consider three 

types of the adversaries: 
 

1. Passive Attacker: The passive adversary eavesdrops on conversations 

between an honest prover and verifier to acquire information (usually 

conversation transcript). 
 

2. Active Attacker: The active adversary interacts with honest prover 
sequentially as a cheating verifier to acquire information before 

attempting impersonation.  
 

3. Concurrent Attacker: A special type of active adversary where it can 

interact with multiple provers at the same time to acquire information 
before attempting impersonation. 

 The whole process of identification schemes are based on the two-

phase game, in which the impersonation attack is between an impersonator 
and the challenger: 
 

1. Setup. The challenger takes in the security parameter and runs KeyGen. 

The resulting system parameters are given to the impersonator while the 

master secret is kept to itself. 
 

2. Phase 1. In this phase, the impersonator plays the role as a cheating 
verifier and can issue transcript queries to the challenger. The 

challenger responds by sending the commitment, challenge and 

corresponding response to the impersonator. These queries are 
interleaved and asked adaptively.  
 

3. Phase 2. In this phase, the impersonator now acts as a cheating prover 
and output a challenge which it wishes to impersonate and tries to 

convince the verifier to accept. Impersonator is said to win the game if 

it successfully convinces the verifier in accepting it.   

 We say that an identification scheme is �3, MN , 7 -secure under non-

adaptive passive attacks for any non-adaptive passive impersonator O who 

runs in time 3, 89:O �
JE9LF�P3ELB 4 7, where O can makes at most MN 
transcript queries. 
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3.  THE STANDARD MODEL OF IDENTIFICATION SCHEME  

BASED ON DEHP / BFHP 

 We begin by discussing the following lemma regarding the initial 

solution pair for the Diophantine equation     .�*, + � �	* / ��+ which 

are �*2 , +2 . 
 

Lemma 2. 

The initial solution �*2 , +2  for the Diophantine equation .�*, + � �	* /
��+ with parameter selection as mentioned in Proposition 1, are of 

minimum length 
�-bits. 
 

Proof. 

From .�*, + � �	* / ��+, by the parameter selection as mentioned in 

Proposition 1, it is obvious that .�*, +  is at minimum 
�-bits. To obtain 
the initial solution, begin by using the Euclidean algorithm upon the 

Diophantine equation �	* / ��+ � gcd��	, �� � 1. Then, to obtain the 

initial solution for .�*, + � �	* / ��+ multiply the initial solution 

obtained by using the Euclidean algorithm upon �	* / ��+ � 1with 

.�*, + . Hence, the initial solution for .�*, + � �	* / ��+ is at least 
�-

bits.6 

 

3.1 Standard Identification Scheme against Impersonation under 

Non-Adaptive Passive Attack 

KeyGen: The algorithm generates the private keys T��U��	� , "��V$%&,�V$'	�, 

the public keys of T+�U��	� , "��$%&,�$'	� and compute   W � ∑ +������	 .  

Publicize �T+�U��	� , W� and keep T��U��	�  secret. We will use at minimum 

� � 128. 
 

Identification Protocol:  

1. Prover 8 picks  T9�U��	� , "��V$%&,�V$'	� randomly and sends  X �
∑ +�9����	  to the Verifier  G. 

 

2. Verifier G picks a random challenge, � , T0,1U and sends to Prover 8. 

3. Prover8 returns the response by computing Z� � 9� / ���for � � 1,2 to 

Verifier G. 

4. Verifier G checks the bit length of all responses TZ�U��	�  and accepts if 

all responses are within the interval �2��'	, 2��(	 and ∑ +�Z����	 � X /
�W. 
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Completeness  

The following shows the completeness of the identification process: 

  

  ∑ +�Z����	 � +	Z	 / +�Z� 

   � +	�9	 / ��	 / +��9� / ���  

   � +	9	 / +	��	  / +�9� / +���� 

   � +	9	 / +�9� / +	��	 / +���� 

   � X / �W. 6 

Remark 2 

Since initial solution �*2, +2  for the Diophantine equation W � ∑ +������	  is 

at least 3�-bits, then to utilize it for impersonation would be futile even 

though the summation  ∑ +�Z����	 � X / �W would still be obtained. In fact, 

any element within the general solution for W � ∑ +������	  (i.e. �	 � �	,2 /
+�3 and �� � ��,2 � +	3 where 3 , ") would result in the summation 

∑ +�Z����	 � X / �W to be true. However, for each incorrect 3 , " would 

result in responses of TZ�U��	� \ �2��'	, 2��(	 .  In fact, by Proposition 1 

we have proven that the preferred solution ��	, ��  is unique with high 

probability for W � ∑ +������	  and the corresponding 3 is infeasible to be 

obtained. 

 

3.2 Security Analysis of Identification Scheme against Impersonation 

under Non-Adaptive Passive Attack 

Theorem 1. 

The identification scheme based on the BFHP is �3, MN , 7 -secure against 

impersonation under non-adaptive passive attacks assuming the BFHP 

is�3′, 7′�-hard where 

7 C ]7′ / 1
M 

Proof. 

To provide a proof of security of the identification scheme, we assume if 

there exists an Impersonator, O who can �3, MN , 7 -break the identification 

scheme then there exists an algorithm (Simulator), Iwho can �3′, MN , 7′�-

solve the BFHP. The following shows the simulation of the challenger from 

Simulator, I to the Impersonator, O: 
 

1. SETUP.  The Simulator, I randomly chooses public keys T+�U��	�  

and   W � ∑ +������	 . It should be noticed that the Simulator, I does not 
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know the secretsT��U��	� . I then passes all the public keys �T+�U��	� , W� 

to the Impersonator, O. 

 

2. TRANSCRIPT QUERIES. For any transcript queried by 

Impersonator  O, the simulatorI randomly selectsTZ�U��	� ,
"��V$%&,�V$^&�, � , T0,1Uand returns the valid transcript to  O. 

 

_X � ` +�Z�
�

��	
� �W, �, TZ�U��	� a 

 

The correctness of the valid transcript is given below: 
 

I randomly selects ��̃, TZ̃�U��	� � and computes 

 

  Xc � ∑ +� Z̃����	 � �̃W 

  � +	�9	 / �̃�	 / +��9� / �̃�� � �̃W 

  � +	9	 / +	�̃�	 / +�9� / +��̃�� � �̃W 

  � �+	9	 / +�9� / �+	�̃�	 / +��̃�� � �̃W 

  � X / �̃W � �̃W6 
 

3. IMPERSONATION PHASE. After some time  3, the Impersonator  O 

wishes to challenge and impersonate. It is assumed that the 

Impersonator O plays the role of cheating prover that tries to convince 

the simulator, I to accept. By resetting O to the commitment phase after 

sending the response dZ	,�e��	
� , dZ�,�e��	

�
,  I will then able to obtain two 

valid transcript  

fX, �	, dZ	,�e��	
� gandfX, �� , dZ�,�e��	

� g. 
 

Here Z	,� and Z�,� represent the responses sent by the Prover upon 

challenge �	 and �� respectively. Upon receiving the valid transcripts, I 

will then verify the bit length of dZ	,�e, dZ�,�e , "��V$%&,�V$^&�.  

 

Extraction is then done by calculating  
 

_�	 � Z	,� � Z	,	
�� � �	

, �� � Z�,� � Z�,	
�� � �	

a 

 

which outputs the solution to the BFHP problem of W � ∑ +������	 . This 

completes the simulation. 
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Remark 3 

It can be easily seen that 

  �	 � h&,V'h&,&
iV'i&

 

  � �j&(iVk& '�j&(i&k& 
iV'i&

 

  � iVk&'i&k&
iV'i&

 6 

Remark 4 

Upon the responses purported by Impersonator O, Z� � 9� / ��� with 

9� , "��V$%&,�V$� and �� , "��V$%&,�V$�, the computed responses are within 

the interval�2��'	, 2��(	 . Once the simulator I accepts the correctness of 

the responses. it will then continue the extracting process. 
 

4. PROBABILITY STUDY. The analysis of the probability is based on 

the Simulator, I winning the game and solves the BFHP. Let 7 �
�
+l

�-m'mn��  be the success probability of the impersonation under 

passive attack and let 7′ � �
+opqr�� be the probability of Simulator 

I winning the game by solving the BFHP, by the Reset Lemma 

proposed by Bellare and Palacio: 
 

89:I LFs+EL ;�<8B � 89tI �F
J*3EL T��U��	� u 

7′ v w7 � 1
Mx

�
 

7 C 1
M / ]7′ 

�
+l
�-m'mn�� C 1

M / ]�
+opqr��  . 6 

 

4. COMPARISON 

The original Fiat-Shamir identification scheme utilized the square 
root modulo problem in designing the scheme. Besides that, current existing 

identification schemes, such as Guillou-Quisquater (GQ) and Schnorr’s 

identification schemes utilized the RSA problem and Discrete Log Problem 
(DLP), respectively. Our identification scheme which is based upon the 

BFHP uses simple addition and multiplication operations, containing no 

pairings, hence provides efficient computing time. The following table 

indicates the complexity of the identification scheme of our work based on 
BFHP as compared to Fiat-Shamir, GQ and Schnorr’s schemes: 
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TABLE 1: Complexity comparison of identification schemes based on 4 different hard 
problem assumptions. 

 

 BFHP Fiat-Shamir 

Addition  Multiplication Exponentiation Addition  Multiplication Exponentiation 

KeyGen k k 0 0 0 k 

Prove 3k 3k+1 0 0 k 2k 

Verify k k+2 0 0 k 2k 

 

 Guillou-Quisquater Schnorr 

Addition  Multiplication Exponentiation Addition  Multiplication Exponentiation 

KeyGen 0 0 k 0 0 k 

Prove 0 k 2k k k 0 

Verify 0 k 2k 0 k 2k 

 

 

5. CONCLUSION 

Based on the time complexity analyzed in the previous section, our 

zero knowledge identification scheme based on the BFHP provides better 
efficiency. As proposed in Section 3, this scheme utilizes a Diophantine 

Equation which consists of only addition and multiplication operations, 

with no exponentiation and pairing. This will greatly increase the speed 

during the identification process. We have also showed that our scheme 
based is provably secure against the non-adaptive passive attack, under the 

assumption that solving the BFHP is hard. Hence, our proposed 

identification scheme is more desirable than existing schemes. The 
identification scheme of security against impersonation under active and 

concurrent attacks still remains to be an open problem. 
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