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ABSTRACT 

In this paper, we use the homotopy perturbation sumudu transform method 

(HPSTM) to solve heat and wave-like equations. The proposed scheme finds the 
solution without any discretization or restrictive assumptions and avoids the round-
off errors. Several examples are given to verify the reliability and efficiency of the 
method. The fact that the proposed technique solves nonlinear problems without 
using Adomian’s polynomials can be considered as a clear advantage of this 
algorithm over the decomposition method. 

 
Keywords: homotopy perturbation sumudu transform method, sumudu transform, 

heat and wave-like equations, He's Polynomials. 

 
 

1. INTRODUCTION 

The heat and wave-like models are the integral part of applied 
sciences and arise in various physical phenomena. Several techniques 

including spectral, characteristic, modified variational iteration, Adomian’s 

decomposition method and He’s polynomials have been used for solving 
these problems(see Noor and Mohyud-Din (2008), Wazwaz and Gorguis 

(2004), Wilcox (1970) and Mohyud-Din (2009)) and references therein. 

Most of these methods have their inbuilt deficiencies like the calculation of 
Adomian’s polynomials, the Lagrange multiplier, divergent results and 

huge computational work. He (1999, 2003, 2004) and references therein 

developed the homotopy perturbation method (HPM) by merging the 

standard homotopy and perturbation for solving various physical problems. 
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It is worth mentioning that the HPM is applied without any discretization, 
restrictive assumption or transformation and is free from round off errors. 

The homotopy perturbation method is also combined with the well-known 

Laplace transformation method (Madani and Fathizadeh (2010) and Khan 
and Wu (2011)) to produce a highly effective technique for handling many 

nonlinear problems. Very recently Singh, Kumar and Sushila (2011) have 

introduced, a new technique called homotopy perturbation sumudu 

transform method (HPSTM) for solving nonlinear equations. It is worth 
mentioning that HPSTM is an elegant combination of the sumudu transform 

method, the homotopy perturbation method and He’s polynomials and is 

mainly due to Ghorbani and Saberi-Nadjafi (2007) and Ghorbani (2009).  
 

The use of He’s polynomials in the nonlinear term was first 

introduced by Ghorbani and Saberi-Nadjafi (2007) and Ghorbani (2009). 

HPSTM provides the solution in a rapid convergent series which may lead 
to the solution in a closed form. The advantage of this method is its 

capability of combining two powerful methods for obtaining exact and 

approximate solutions for nonlinear equations. Inspired and motivated by 
the ongoing research in this area, we apply HPSTM for solving the heat and 

wave-like equations in the present article. Several examples are given to 

verify the reliability and efficiency of the technique. 
 

 

2. SUMUDU TRANSFORM 

In early 90’s, Watugala (1998) introduced a new integral transform, 

named the sumudu transform and applied it to the solution of ordinary 

differential equation in control engineering problems. The sumudu 
transform is defined over the set of functions 

 
j|t|/ j

1 2A   {f(t) | M, , 0, |f (t)|  M e ,if t ( 1)  [0, )}
τ

τ τ= ∃ > < ∈ − × ∞  

by the following formula 

0

t

1 2f(u)  S [f(t)]  f (ut) e dt, u  ( , ).τ τ
∞

−= = ∈ −∫               (1) 

Some of the properties were established by Weerakoon in Kilicman et al. 

(2011) and Weerakoon (1994). In Asiru (2004), further fundamental 

properties of this transform were also established. Similarly, this transform 
was applied to the one-dimensional neutron transport equation in Kadem 
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(2005). In fact it was shown that there is strong relationship between 

Sumudu and other integral transform (see Kilicman  and Eltayeb (2010). In 
particular the relation between Sumudu transform and Laplace transforms 

was proved in Kilicman and Eltayeb (2010). 

 

Further, in Eltayeb et al. (2010), the Sumudu transform was 
extended to the distributions and some of their properties were also studied 

in Kilicman et al. (2010). Recently, this transform is applied to solve the 

system of differential equations (see Kilicman et al. (2010)). 
 

Note that a very interesting fact about Sumudu transform is that the 

original function and its Sumudu transform have the same Taylor 
coefficients except the factor n (see Zhang (2007)). 

 

Thus if 
0

( )
n

n

n

f t a t
∞

=

=∑   then 
0

( ) ! ,
n

n

n

F u n a u
∞

=

=∑  see Kilicman and 

Eltayeb (2010). Similarly, the Sumudu transform sends combinations,   
C(m, n), into permutations, P(m,n) and hence it will be useful in the discrete 

systems. 

 
 

3. HOMOTOPY PERTURBATION SUMUDU TRANSFORM 

METHOD (HPSTM) 

To illustrate the basic idea of this method, we consider a general 

nonlinear non-homogenous partial differential equation with the initial 

conditions of the form 
 

( , ) ( , ) ( , ) ( , ),DU x t RU x t N U x t g x t+ + =              (2) 

 

( ,0) ( ), ( ,0) ( ),tU x h x U x f x= =  

 

where D  is the second order linear differential operator 2 2D t= ∂ ∂ , R is 

the linear differential operator of less order than D, N  represents the general 

nonlinear differential operator and ( , )g x t is the source term.  
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Taking the sumudu transform on both sides of Equation (2), we get 
 

[ ( , )] [ ( , )] [ ( , )] [ ( , )].S DU x t S RU x t S N U x t S g x t+ + =               (3) 

 
Using the differentiation property of the sumudu transform and above initial 

conditions, we have 

 

[ ]2 2[ ( , )] [ ( , )] ( ) ( ) [ ( , )] [ ( , )] .S U x t u S g x t h x uf x u S RU x t N U x t= + + − +    (4) 

 
Now, applying the inverse sumudu transform on both sides of Equation (4), 
we get 

 
1 2( , ) ( , ) [ ( , ) ( , )] ,U x t G x t S u S RU x t N U x t−  = − +                    (5) 

 

where ( , )G x t represents the term arising from the source term and the 

prescribed initial conditions. Now, we apply the homotopy perturbation 
method 

0

( , ) ( , )n
n

n

U x t p U x t
∞

=

=∑                           (6) 

 

and the nonlinear term can be decomposed as  

0

( , ) ( ),n
n

n

N U x t p H U
∞

=

=∑                              (7) 

 

for some He's polynomials ( )nH U (see Ghorbani (2009) and Mohyud-Din 

et al. (2009)) that are given by 

 

0 1

0 0

1
( , ,..., )

!

n
i

n n in
i p

H U U U N p U
n p

∞

= =

  ∂
=   

∂    
∑ , 0,1,2,3,...n =            (8) 

 

Substituting Equations (6) and (7) in Equation (5), we get 

0

( , )n
n

n

p U x t
∞

=

∑  

1 2

0 0

( , ) ( , ) ( ) ,n n
n n

n n

G x t p S u S R p U x t p H U
∞ ∞

−

= =

   
= − +        

∑ ∑       (9) 
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which is the coupling of the sumudu transform and the homotopy 

perturbation method using He's polynomials. 
 

By comparing the coefficient of like powers of p, the following 

approximations are obtained 

 
0

0: ( , ) ( , ),p U x t G x t=  

1 1 2
1 0 0: ( , ) [ ( , ) ( )] ,p U x t S u S RU x t H U−  

 = − +  

2 1 2
2 1 1: ( , ) [ ( , ) ( )]p U x t S u S RU x t H U−  

 = − + ,          (10) 

3 1 2
3 2 2: ( , ) [ ( , ) ( )]p U x t S u S RU x t H U−  

 = − + , 

⋮  
 

 

4. NUMERICAL APPLICATIONS 

In this section, we apply the homotopy perturbation Sumudu 

transform method [HPSTM] for solving heat and wave-like equations. 

 
Example 4.1. Consider the following one-dimensional initial boundary 

value problem which describes the heat-like models (Noor and Mohyud-

Din (2008) and Wazwaz and Gorguis (2004).  
 

21
, 0 1, 0,

2
t xxU x U x t= < < >                        (11) 

 

with boundary conditions 
 

(0, ) 0, (1, ) ,tU t U t e= =                                (12) 

 
and the initial condition 

     2( ,0) .U x x=                                       (13) 

 

Taking the sumudu transform on both sides of equation (11) subject to the 

initial condition, we have 
 

2 21
[ ( , )] [ ].

2
xxS U x t x x u S U= +                          (14) 
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The inverse of sumudu transform implies that 

2 2 11
( , ) [ ] .

2
xxU x t x x S u S U−   = +                         (15) 

Now, applying the homotopy perturbation method, we get 

 

2 2 1

0 0

1
( , ) ( , ) .

2

n n
n n

n n xx

p U x t x p x S u S p U x t
∞ ∞

−

= =

    
  = +   
       

∑ ∑       (16) 

 
Comparing the coefficients of like powers of p, we have 

 
0 2

0
: ( , ) ,p U x t x=  

[ ]1 2 1 2

1 0

1
: ( , ) [( ) ] ,

2
xxp U x t x S u S U x t−= =                       (17) 

[ ]
2

2 2 1 2

2 1

1
: ( , ) [( ) ]

2 2!
xx

t
p U x t x S u S U x−= =  

 

Proceeding in a similar manner, we have                          
3

3 2
3: ( , ) ,

3!

t
p U x t x=  

4
4 2

4: ( , ) ,
4!

t
p U x t x=                                    (18) 

⋮  
 

Therefore the solution ( , )U x t  is given by 

 
2 3 4

2( , ) 1 ,
2! 3! 4!

t t t
U x t x t

 
= + + + + + 

 
⋯                    (19) 

in a series form, and 
 

2( , ) ,tU x t x e=                                             (20) 

in closed form. 

 

Example 4.2. Consider the following two-dimensional initial boundary 

value problem which describes the heat-like models (Noor and Mohyud-
Din (2008) and Wazwaz and Gorguis (2004)). 
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( )2 21
, 0 , 1, 0,

2
t xx yyU y U x U x y t= + < < >                     (21) 

 

with boundary conditions 

 

(0, , ) 0, (1, , ) 2sinh ,

( ,0, ) 0, ( ,1, ) 2cosh ,
x x

y y

U y t U y t t

U x t U x t t

= =
= =

                           (22) 

 
and initial condition 

2( , ,0) .U x y y=                                           (23) 

 
In a similar way as above, we have 

 

2 2 1

0 0

1
( , , ) ( , , )

2

n n

n n

n n xx

p U x y t y p y S u S p U x y t
∞ ∞

−

= =

    
= +         

∑ ∑  

2 1

0

1
( , , ) .

2

n

n

n yy

x S u S p U x y t
∞

−

=

    +           
∑              (24) 

 

Comparing the coefficients of like powers of p, we have 

  
0 2

0: ( , , ) ,p U x y t y=  
1 2

1: ( , , ) ,p U x y t x t=   
2

2 2
2: ( , , ) ,

2!

t
p U x y t y=                                                 (25) 

3
3 2

3: ( , , ) ,
3!

t
p U x y t x=  

4
4 2

4: ( , , ) ,
4!

t
p U x y t y=  

⋮  

Therefore the solution ( , , )U x y t is given by 

 
3 5 2 4

2 2( , , ) 1 ,
3! 5! 2! 4!

t t t t
U x y t x t y

   
= + + + + + + +   

   
⋯ ⋯               (26) 
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which is in series form, and 
 

2 2( , , ) sinh cosh ,U x y t x t y t= +                                 (27) 

 

in closed form. 

 

Example 4.3. Consider the following three-dimensional inhomogeneous 
initial boundary value problem which describes the heat-like models (Noor 

and Mohyud-Din (2008) and Wazwaz and Gorguis (2004)).  
 

( )4 4 4 2 2 21
, 0 , , 1, 0,

36
t xx yy zzU x y z x U y U z U x y z t= + + + < < >     (28) 

 

subject to the following boundary conditions 

 
4 4

4 4

4 4

(0, , , ) 0, (1, , , ) ( 1),

( ,0, , ) 0, ( ,1, , ) ( 1),

( , ,0, ) 0, ( , ,1, ) ( 1),

t

t

t

U y z t U y z t y z e

U x z t U x z t x z e

U x y t U x y t x y e

= = −

= = −

= = −

               (29) 

 
and the initial condition 

( , , ,0) 0.U x y z =                                        (30) 

 
In a similar way as above, we have 

 

4 4 4 2 1

0 0

1
( , , , ) ( , , , )

36

n n

n n

n n xx

p U x y z t x y z t p x S u S p U x y z t
∞ ∞

−

= =

    
= +         

∑ ∑
 

2 1

0

1
( , , , )

36

n

n

n yy

y S u S p U x y z t
∞

−

=

   
+    

     
∑

 

2 1

0

1
( , , , ) .

36

n

n

n zz

z S u S p U x y z t
∞

−

=

   
+          

∑               (31) 

 

Comparing the coefficients of like powers of p, we have 
 

0 4 4 4

0
: ( , , , ) ,p U x y z t x y z t=  

2
1 4 4 4

1
: ( , , , ) ,

2!

t
p U x y z t x y z=  
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3
2 4 4 4

2
: ( , , , ) ,

3!

t
p U x y z t x y z=                                (32) 

4
3 4 4 4

3
: ( , , , ) ,

4!

t
p U x y z t x y z=  

5
4 4 4 4

4
: ( , , , ) ,

5!

t
p U x y z t x y z=  

⋮  
 

Therefore the solution ( , , , )U x y z t  is given by 

 
2 3 4 5

4 4 4( , , , ) ,
2! 3! 4! 5!

t t t t
U x y z t x y z t

 
= + + + + + 

 
⋯                   (33) 

in a series form, and 

 
4 4 4( , , , ) ( 1),tU x y z t x y z e= −                                  (34) 

in closed form. 

 

Example 4.4. Consider the following one-dimensional initial boundary 

value problem which describes the wave-like models (Noor and Mohyud-

Din (2008) and Wazwaz and Gorguis (2004)) 
 

21
, 0 1, 0,

2
tt xxU x U x t= < < >                      (35) 

 
subject to the  boundary conditions 

 

(0, ) 0, (1, ) 1 sinh ,U t U t t= = +                      (36) 

 

and the initial conditions 

 
2( ,0) , ( ,0) .

t
U x x U x x= =                          (37) 

 
In a similar way as above, we have 

 

2 2 1 2

0 0

1
( , ) ( , ) .

2

n n

n n

n n xx

p U x t x x t p x S u S p U x t
∞ ∞

−

= =

    
 = + +          

∑ ∑      (38) 
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Comparing the coefficients of like powers of p, we have 
 

0 2

0
: ( , ) ,p U x t x x t= +  

3
1 2

1
: ( , ) ,

3!

t
p U x t x=  

5
2 2

2
: ( , ) ,

5!

t
p U x t x=                                                (39) 

7
3 2

3
: ( , ) ,

7!

t
p U x t x=  

⋮  
 

Therefore the solution ( , )U x t  is given by 

 
3 5 7

2( , ) ,
3! 5! 7!

t t t
U x t x x t

 
= + + + + + 

 
⋯                           (40) 

in series form, and 

 
2( , ) sinh ,U x t x x t= +                                   (41) 

in closed form. 

 

Example 4.5. Consider the following two-dimensional initial boundary 

value problem which describes the wave-like models (Noor and Mohyud-

Din (2008) and Wazwaz and Gorguis (2004)  
 

( )2 21
, 0 , 1, 0,

12
tt xx yyU x U y U x y t= + < < >                      (42) 

 
subject to  the Neumann boundary conditions 

 

(0, , ) 0, (1, , ) 4cosh ,
( ,0, ) 0, ( ,1, ) 4sinh ,

x x

y y

U y t U y t t

U x t U x t t

= =
= =

                   (43) 

 
and the initial conditions 
 

4 4( , ,0) , ( , ,0) .
t

U x y x U x y y= =                     (44) 
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In a similar way as above, we have 

 

4 4 2 1 2

0 0

1
( , , ) ( , , )

12

n n

n n

n n xx

p U x y t x y t p x S u S p U x y t
∞ ∞

−

= =

    
= + +         

∑ ∑  

2 1 2

0

1
( , , ) .

12

n

n

n yy

y S u S p U x y t
∞

−

=

    +           
∑                (45) 

 

 
Comparing the coefficients of like powers of p, we have 

 
0 4 4

0
: ( , , ) ,p U x y t x y t= +  

2 3
1 4 4

1
: ( , , ) ,

2! 3!

t t
p U x y t x y= +  

4 5
2 4 4

2
: ( , , ) ,

4! 5!

t t
p U x y t x y= +                               (46) 

6 7
3 4 4

3
: ( , , ) ,

6! 7!

t t
p U x y t x y= +  

⋮  
 

Therefore the solution ( , , )U x y t  is given by 

 
2 4 3 5

4 4( , , ) 1 ,
2! 4! 3! 5!

t t t t
U x y t x y t

   
= + + + + + + +   

   
⋯ ⋯                (47) 

 
in series form, and 

 
4 4( , , ) cosh sinh ,U x y t x t y t= +                              (48) 

in closed form. 

 
Example 4.6. Consider the following three-dimensional inhomogeneous 

initial boundary value problem which describes the wave-like models (Noor 

and Mohyud-Din (2008) and Wazwaz and Gorguis (2004)  

 

2 2 2 2 2 21
( ) ( ), 0 , , 1, 0,

2
tt xx yy zzU x y z x U y U z U x y z t= + + + + + < < >   (49) 

 



Jagdev Singh, Devendra Kumar & Adem Kilicman 

 

90 Malaysian Journal of Mathematical Sciences 

 

subject to the boundary conditions 
 

2 2 2 2

2 2 2 2

2 2 2 2

(0, , , ) ( 1) ( 1), (1, , , ) (1 )( 1) ( 1),

( ,0, , ) ( 1) ( 1), ( ,1, , ) (1 )( 1) ( 1),

( , ,0, ) ( )( 1), ( , ,1, ) ( )( 1) ( 1),

t t t t

t t t t

t t t

U y z t y e z e U y z t y e z e

U x z t x e z e U x z t x e z e

U x y t x y e U x y t x y e e

− −

− −

−

= − + − = + − + −

= − + − = + − + −

= + − = + − + −

                                                                                                                   (50)                                                                           

and having the initial conditions 

 
2 2 2( , , ,0) 0, ( , , ,0) .

t
U x y z U x y z x y z= = + −                   (51)                   

 
In a similar way as above, we have 

2
2 2 2

0

( , , , ) ( )
2

n

n

n

t
p U x y z t x y z

∞

=

= + +∑  

2 2 2 2 1 2

0

1
( ) ( , , , )

2

n

n

n xx

x y z t p x S u S p U x y z t
∞

−

=

    
+ + − +         

∑

2 1 2

0

1
( , , , )

2

n

n

n yy

y S u S p U x y z t
∞

−

=

   
+    

     
∑

        

2 1 2

0

1
( , , , ) .

2

n

n

n zz

z S u S p U x y z t
∞

−

=

   
+          

∑               (52) 

 

Comparing the coefficients of like powers of p, we have 

 

( ) ( )
2

0 2 2 2 2 2 2
0

2
: ( , y, , ) ,

t
p U x z t x y z x y z t= + + + + −  

( ) ( )
4 3

1 2 2 2 2 2 2
1

4 3
: ( , y, , ) ,

! !

t t
p U x z t x y z x y z= + + + + −  

( ) ( )
6 5

2 2 2 2 2 2 2
2

6 5
: ( , y, , ) ,

! !

t t
p U x z t x y z x y z= + + + + −           (53) 

( ) ( )
8 7

3 2 2 2 2 2 2
3

8 7
: ( , y, , ) ,

! !

t t
p U x z t x y z x y z= + + + + −  

⋮  
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Therefore the solution ( , y, , )U x z t  is given by 

 
2 3 4

2 2( , y, , ) ( )
2! 3! 4!

t t t
U x z t x y t

 
= + + + + + 

 
⋯  

2 3 4
2 ,

2! 3! 4!

t t t
z t
 

+ − + − + + 
 

⋯                     (54) 

in the series form, and 
 

( ) ( )2 2 2 2 2 2( , y, , ) ,t tU x z t x y e z e x y z−= + + − + +               (55) 

  

in closed form. 

 

5. CONCLUSION 

In this paper, we have applied the homotopy perturbation sumudu 

transform method (HPSTM) for solving heat and wave-like equations. It is 
worth mentioning that the proposed technique is capable of reducing the 

volume of the computational work as compared to the classical methods 

while still maintaining the high accuracy of the numerical result; the size 
reduction amounts to an improvement of the performance of the approach. 

The method gives more realistic series solutions that converge very rapidly 

in physical problems. The fact that the HPSTM solves nonlinear problems 
without using Adomian’s polynomials is a clear advantage of this technique 

over the decomposition method. In conclusion, the HPSTM may be 

considered as a nice refinement in existing numerical techniques and might 

find the wide applications. 
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