UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF *Salmonella*-BASED DNA VACCINE AGAINST RESPIRATORY SYNCYTIAL VIRUS

SITI SYAZANI SUHAIMI

FBSB 2011 48
DEVELOPMENT OF *Salmonella*-BASED DNA VACCINE AGAINST RESPIRATORY SYNCYTIAL VIRUS

SITI SYAZANI SUHAIMI

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2011
DEVELOPMENT OF *Salmonella*-BASED DNA VACCINE AGAINST RESPIRATORY SYNCYTIAL VIRUS

By

SITI SYAZANI SUHAIMI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

August 2011
DEDICATION

To my beloved family
for their endless love, concern and encouragement....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for degree of Master Science.

DEVELOPMENT OF *Salmonella*-BASED DNA VACCINE AGAINST RESPIRATORY SYNCYTIAL VIRUS

By

SITI SYAZANI BINTI SUHAIMI

August 2011

Chairman : Fatemeh Jahanshiri, PhD

Faculty : Biotechnology and Biomolecular Sciences

Human respiratory syncytial virus (HRSV) remains a major respiratory pathogen responsible for severe pulmonary disease in young children, immunodeficient patients and the elderly. Although these complications are public health concern worldwide, an effective RSV vaccine is still unavailable. In 1960s the formalin-inactivated (FI) RSV vaccine failed due to an imbalanced Th2-biased immune response as enhanced diseases in vaccinated infants were induced upon infection with RSV. It is believed that an effective and safe vaccine needs to elicit a balanced immune response, including high levels of HRSV-specific neutralizing antibodies, Th1/Th2 CD4+ T-cells, CD8+ T-cells, and preferably strong mucosal IgA to provide complete protection against RSV.
In the present study a Salmonella-based DNA vaccine against HRSV was designed. The G glycoprotein which has been implicated as the attachment protein of RSV is a potentially important target for protective antiviral immune response. While, cholera toxin B subunit (CTB) gene which acts as genetic adjuvant is an effective strategy to enhance induction of both humoral and cellular immune responses. Therefore, firstly the RSV G epitope regions including residues 125-226 was cloned along with the CTB gene into pVAX1, a mammalian expression vector, resulting a DNA vaccine vector designated as pVAX1-CTB/G. In vitro expression of CTB-G was confirmed by transfection of the recombinant pVAX1-CTB/G into COS-7 cells as the expected protein band was observed in western blot analysis. Secondly, the pVAX1-CTB/G vector was transformed into Salmonella typhi Ty21a as a vehicle for DNA vaccine delivery. The immunogenicity and protective efficacy of recombinant Salmonella harbouring the pVAX1-CTB/G was assessed in BALB/c mice model before and after RSV challenge.

The capacity of pVAX1-CTB/G to enhance humoral (Th2), cellular (Th1), as well as mucosal responses were evaluated by measurement of cytokines and immunoglobulin levels in serum of immunized BALB/c mice before and after challenge with RSV. Results indicated that the developed vaccine could significantly enhance Th1 (IL-2, IFN-γ) and Th2 (IL-4, IL-10) cytokines response compared to control group. While, antibody isotype immunoglobulin analysis revealed that the DNA vaccine induced significant concentrations of systemic antibody (IgG1, IgG2a) as well as mucosal (IgA) in vaccinated mice compared to control group. Moreover, the obtained ratio of Th1/Th2 was desirable (~1) suggesting that Salmonella carrying pVAX1-CTB/G is potent
vaccine candidate against HRSV. Lymphocyte proliferation assay showed that cell mediated immunity was also significantly increased in response to this vaccine. Finally, significant reduction of HRSV titer and presence of less viral RNA in the lung tissues of vaccinated mice compared to control confirmed the efficacy of *Salmonella* vaccine harboring pVAX1-CTB/G.
Abstrak tesis yang telah dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PEMBANGUNAN DNA VAKSIN BERASASKAN Salmonella MENENTANG VIRUS RESPIRASI SINSITIUM (RSV)

Oleh

SITI SYAZANI SUHAIMI

Ogos 2011

Pengerusi : Fatemeh Jahanshiri, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Virus Respirasi Sinsitium (RSV) masih merupakan pathogen respirasi utama yang bertanggungjawab kepada penyakit pulmonary yang teruk di kalangan kanak-kanak muda, pesakit imunodefisiensi and orang tua. Walaupun komplikasi-komplikasi ini merupakan keprihatinan kesihatan awam seluruh dunia, vaksin menentang RSV yang efektif masih tiada. Pada tahun 1960, vaksin Formalin-tidak aktif (FI) RSV gagal disebabkan ketidakseimbangan bias Th2 respon imun dimana penyakit meningkat di kalangan bayi yang divaksinkan setelah dijangkiti dengan RSV. Dipercayai bahawa vaksin yang efektif dan selamat memerlukan induksi respon immun yang seimbang, termasuk aras tinggi antibodi neutral RSV yang spesifik, sel-sel Th1/Th2 CD4+ T, sel-sel CD8+ T dan mukosal IgA yang kuat untuk menyediakan perlindungan yang lengkap terhadap RSV.

Kapasiti pVAX1-CTB/G untuk meningkatkan respon imun humoral (Th2), selular (Th1), dan mukosal telah dinilai dengan menggunakan pengukuran aras sitoktin dan imunoglobolin dalam serum mencit BALB/c yang diimunkan sebelum dan selepas dicabar dengan RSV. Keputusan menunjukkan pembangunan vaksin boleh meningkatkan Th1 (IL-2, IFN-γ) dan Th2 (IL-4, IL10) respon sitoktin dengan signifikan berbanding dengan kumpulan kawalan dengan signifikan. Sementara itu, analisis isotype immunoglobolin menunjukkan bahawa DNA vaksin menginduksi kosentrasa antibodi sistemik (IgG1, IgG2a) dan mukosal (IgA) dengan signifikan pada mencit yang
divaksinkan berbanding kumpulan kawalan. Tambahan pula, nisbah Th1/Th2 yang diperolehi adalah patut (~1), mencadangkan bahawa Salmonella yang membawa pVAX1-CTB/G merupakan calon vaksin yang kuat menetang RSV. Ujian proliferasi limfosit menunjukkan keimunan mengantarai sel juga meningkat dengan signifikan dalam respon vaksin ini. Akhirnya, penurunan titer RSV yang signifikan dan pengurangan kehadiran virus-virus RNA pada tisu hati paru-paru dalam respon terhadap vaksin ini berbanding dengan kawalan mengesahkan kekuatan vaksin Salmonella yang membawa pVAX1-CTB/G.
ACKNOWLEDGMENTS

All praise to Almighty God, the Merciful and Benevolent. The completion of this study would not have been possible had it not been due to His will and favor.

With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor Dr. Fatemeh Jahanshiri. She is the definition of a genuine mentor and advocate for students. I am extremely grateful for her infinite optimism and patience during my training, and enthusiasm in teaching me. Her continuous personal and intellectual support has contributed greatly to my well being and educational progress. I wish to extend my greatest regards for the Professor Datin Dr. Khatijah Mohd Yusoff, and Dr Zamberi Sekawi for their invaluable guidance, and careful supervision throughout the study.

I am grateful for all of the members of my laboratory: Salmiah, Syazwan, Emma, Reza, Rand and Mohsin. My special thanks to Mr. Farid for his conceptual and technical assistance throughout my graduate career. I would also like to acknowledge Mrs. Razeih from Medical Genetic Lab, Faculty of Medicine and Health Science, UPM

I want to thank my parents who taught me the value of hard work by their own example and my brothers. They rendered me enormous support during the whole tenure of my research.
I certify that a Thesis Examination Committee has met on 3 August 2011 to conduct the final examination of Siti Syazani Suhaimi on her thesis entitled "Development of Salmonella-Based DNA Vaccine Against Respiratory Syncytial Virus (RSV)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Noorjahan Banu Mohamed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Shuhaimi Mustafa
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Subha A/P Bhassu
Senior Lecturer
Institute of Biological Sciences
Universiti Malaya
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

x
The thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master Science. The members of the Supervisory Committee are as follows:

Fatemeh Jahanshiri, PhD
Lecturer
Faculty of Biotechnology and Biomolecular sciences
Universiti Putra Malaysia
(Chairman)

Datin Khatijah Mohd. Yusoff, PhD
Professor
Faculty of Biotechnology and Biomolecular sciences
University Putra Malaysia
(Member)

Zamberi Sekawi, PhD
Assosiated Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

BUJANG BIN K HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SITI SYAZANI SUHAIMI

Date: 3 August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 2.1 Respiratory Syncytial Virus (RSV)
 2.1.1 Virus classification
 2.1.2 Virus structure
 2.1.3 Virus genome and proteins
 2.1.3.1 Nonstructural proteins
 2.1.3.2 Nucleocapsid associated proteins
 2.1.3.3 Matrix proteins
 2.1.3.4 Surface proteins
 2.1.4 G protein
 2.2 Epidemiology
 2.3 Pathogenesis
 2.4 Treatment and Prevention
 2.5 Immune Response
 2.6.1 Humoral immunity
 2.6.2 Cell mediated immunity
 2.6.3 Th1 and Th2 paradigm
 2.7 Development of vaccines against RSV
 2.7.1 DNA vaccine
 2.7.2 Cholera toxin B subunit as a potent vaccine adjuvant
 2.7.3 Delivery of DNA vaccine by attenuated intracellular bacteria

3. **MATERIAL AND METHOD**
 3.1 Cells, RSV and Media
 3.1.1 Cells and RSV Propagation
 3.1.2 TCID$_{50}$
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Media and bacterial strains</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Media</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Bacterial strains</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>RNA and DNA extraction</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1</td>
<td>RNA extraction</td>
<td>35</td>
</tr>
<tr>
<td>3.3.2</td>
<td>DNA extraction</td>
<td>36</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Agarose gel electrophoresis</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Construction of DNA vaccine vector</td>
<td>37</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Primer</td>
<td>37</td>
</tr>
<tr>
<td>3.4.2</td>
<td>RT-PCR of RSV G domain</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3</td>
<td>PCR of RSV G domain and CTB gene</td>
<td>39</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Plasmid extraction</td>
<td>40</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Ligation</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Transformation of plasmid DNA into E. coli Top 10 and S. typhi Ty21a</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Preparation of E. coli Top 10 competent cells</td>
<td>42</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Heat-shock transformation of E. coli Top 10</td>
<td>43</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Verification of positive transformants</td>
<td>43</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Preparation of electrocompetent S. typhi Ty21a cells</td>
<td>44</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Electroporation of plasmid DNA into S. typhi Ty21a</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>In vitro expression of recombinant CTB and RSV G protein</td>
<td>45</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Transfection of plasmid DNA construct into COS-7 cells</td>
<td>46</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Detection of pVAX1-GFP expression</td>
<td>46</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Detection of pVAX1-CTB/G expression</td>
<td>47</td>
</tr>
<tr>
<td>3.6.4</td>
<td>SDS-PAGE</td>
<td>47</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Western Blotting</td>
<td>49</td>
</tr>
<tr>
<td>3.7</td>
<td>In vivo study of the designed vaccine</td>
<td>50</td>
</tr>
<tr>
<td>3.7.1</td>
<td>BALB/c mice immunization and RSV challenge procedures</td>
<td>51</td>
</tr>
<tr>
<td>3.7.2</td>
<td>BALB/c mice sacrifice procedure and specimen collection</td>
<td>51</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Recovery of recombinant S. typhi Ty21a in the spleen of immunized mice</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Lymphocyte proliferation test</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Bioplex</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>ELISA</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>RT-PCR</td>
<td>55</td>
</tr>
<tr>
<td>3.12</td>
<td>Viral Titration Assay</td>
<td>56</td>
</tr>
<tr>
<td>3.13</td>
<td>Statistical analysis</td>
<td>56</td>
</tr>
<tr>
<td>4.</td>
<td>RESULT</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>RSV propagation</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>TCID$_{50}$</td>
<td>59</td>
</tr>
</tbody>
</table>
4.3 Construction of pVAX1-CTB/G
 4.3.1 Amplification and cloning of CTB gene into pVAX1 mammalian expression vector 60
 4.3.2 Amplification and cloning of G domain into pVAX1-CTB vector 63
 4.3.3 Restriction enzyme analysis of recombinant pVAX-CTB/G 66
4.4 Transformation of pVAX-CTB/G construct into S.typhi Ty21a 67
4.5 Transient transfection of pVAX1-GFP in COS-7 cells 68
4.6 Western blot analysis of recombinant protein expression (CTB-G) in COS-7 cells 69
4.7 Vaccine preparation and counting of live bacteria 70
4.8 Recovery of recombinant Salmonella in spleen of immunized mice 71
4.9 Immunological studies 72
 4.9.1 Lymphocyte proliferation test 72
 4.9.2 Cytokines assay by Bioplex 73
 4.9.3 ELISA 75
4.10 Presence of RSV in lung tissue of immunized mice after RSV challenge 77
 4.10.1 RT-PCR 78
 4.10.2 Virus titration 79

5. DISCUSSION 81
 5.1 Introduction 81
 5.2 Designing and construction of pVAX1-CTB/G 82
 5.3 In vitro expression of CTB-G protein 83
 5.4 Immune response against RSV 84
 5.4.1 Humoral immunity against RSV 85
 5.4.2 Cell mediated immunity against RSV 90
 5.5 Th1/Th2 balance 95
 5.6 Protective efficacy of pVAX1-CTB/G 98
 5.7 Salmonella typhi Ty21a delivery 99

6. CONCLUSION, RECOMMENDATIONS AND FUTURE DIRECTION 100

REFERENCES 103
APPENDICES 131
BIODATA OF STUDENT 141