UNIVERSITI PUTRA MALAYSIA

ULTRASONIC CHARACTERISATION OF OIL PALM TRUNK INFECTED BY *GANODERMA BONINENSE* DISEASE

MOHD KHAIRUL NAJMIE BIN MAMAT

FS 2011 100
ULTRASONIC CHARACTERISATION OF OIL PALM TRUNK INFECTED BY GANODERMA BONINENSE DISEASE

By

MOHD KHAIRUL NAJMIE BIN MAMAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of Requirements for the Degree of Master of Science

April 2011
I dedicated this thesis to

My Parent, My Wife, My Son and Family Members

Whose prayers, support and love

Blessed my heart and sustained me in the years of life.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ULTRASONIC CHARACTERIZATION OF OIL PALM TRUNK INFECTED BY *GANODERMA BONINENSE* DISEASE

By

MOHD KHAIRUL NAJMIE BIN MAMAT

April 2011

Chairman : Professor Haji Kaida Khalid, PhD

Faculty : Science

The ultrasonic characteristics for oil palm trunk which have been infected by *Ganoderma boninense* disease has been studied by using the ultrasonic commercial equipment at frequency 54 kHz. Among the physical characteristics that identifiable in oil palm tree that infected by *Ganoderma boninense* disease was by appearance a mature *Ganoderma* basidiocarp at the stem, lower fronds of an oil palm tree were dead and fractured. An oil palm tree of 30 years old has been used in this study.

The measurement method used in this study was direct transmission method. The study of ultrasonic properties of oil palm trunk was infected with *Ganoderma boninense* disease were made in two stages; where in the first stage, measurement are made at standing oil palm tree and in the second stage; measurement was done in the cut trunk of stem centre to blocks size measuring $5 \times 10 \times 10 \text{ cm}^3$. The number of samples used is 27 and consist of 3 sections namely: inner zone, central zone and peripheral zone.
Results for standing oil palm tree showed that the ultrasonic velocity in the infected with *Ganoderma boninense* disease sample is between 350 – 600 ms\(^{-1}\) while healthy trunk the velocity was exceeding 700 ms\(^{-1}\).

Measurement on the sample cut found that the trunk density of the sample infected decreased as much as 50% of the healthy stem. Percentage of moisture contents the infected areas also higher than the healthy areas. This affects the ultrasonic velocity through radial direction, tangential direction, and longitudinal direction for infected by *Ganoderma boninense* disease area which was consistently lower than healthy stem area. For the 10 cm thickness samples, the ultrasonic velocity for all transit directions was in the range of 260 – 750 ms\(^{-1}\) for the infected sample whereas for healthy samples was in the range of 460 – 900 ms\(^{-1}\).

While, result of elasticity constant for the infected sample was between 0.2 – 8.5 (10\(^8\) Nm\(^{-2}\)) for all directions while the healthy area which was between 1.3 – 32.1 (10\(^8\) Nm\(^{-2}\)) for all directions. These results are very useful for the detection and identification of the location which has been affected by the disease.
PENCIRIAN ULTRASONIK BATANG KELAPA SAWIT YANG DIJANGKITI PENYAKIT *GANODERMA BONINENSE*

Oleh

MOHD KHAIRUL NAJMIE BIN MAMAT

April 2011

Pengerusi : Professor Haji Kaida Khalid, PhD

Fakulti : Sains

Ciri-ciri ultrasonik untuk batang kelapa sawit yang dijangkiti oleh penyakit *Ganoderma boninense* telah dikaji dengan menggunakan alat ultrasonik komersial berfrekuensi 54 kHz. Antara ciri-ciri fizikal dikenalpasti pada pokok kelapa sawit yang dijangkiti penyakit *Ganoderma boninense* ialah dengan kemunculan basidiokarpa *Ganoderma* yang matang pada batang, manakala pelepahnya patah dan mati. Sebatang pokok kelapa sawit berusia 30 tahun telah digunakan dalam kajian ini.

Kaedah pengukuran yang digunakan dalam kajian adalah kaedah penghantaran terus. Proses pengukuran dibuat dalam dua peringkat; dimana peringkat pertama, pengukuran dibuat pada pokok yang hidup dan peringkat kedua; pengukuran pada batang kelapa sawit selepas ditebang dimana batang tersebut dipotong dalam bentuk blok bersaiz 5 x
10 × 10 cm³. Bilangan sampel yang digunakan sebanyak 27 sampel dan ditanda kepada tiga bahagian iaitu zon dalam, zon tengah dan zon periferi (pinggiran).

Keputusan pada pokok hidup menunjukkan halaju ultrasonik yang dijangkiti oleh penyakit *Ganoderma boninense* diantara 350 – 600 ms⁻¹ berbanding pokok sihat melebihi 700 ms⁻¹.

Pengukuran untuk batang selepas ditebang didapati ketumpatan batang yang dijangkiti oleh penyakit *Ganoderma boninense* berkurangan sebanyak 50% berbanding dengan batang yang sihat. Peratusan kelengasan untuk batang yang dijangkiti juga lebih tinggi berbanding batang sihat. Dari kesan ini masa transit untuk gelombang ultrasonik merambat melalui arah jejarian, arah tangen, dan arah membujur lebih tinggi untuk kawasan dijangkiti penyakit *Ganoderma boninense* berbanding kawasan batang sihat. Untuk sampel ketebalan 10 cm, halaju ultrasonik untuk semua arah ialah kira-kira 260 – 750 ms⁻¹ untuk batang dijangkiti oleh penyakit *Ganoderma boninense* manakala untuk sampel sihat ialah kira-kira 460 – 900 ms⁻¹.

Manakala keputusan pemalar kekenyalan pula menunjukkan bahawa kawasan yang dijangkiti penyakit *Ganoderma boninense* adalah di antara 0.2 – 8.5 (10⁸ Nm⁻²) setiap arah. Pemalar kekenyalan untuk kawasan yang sihat pula di antara 1.3 – 32.1 (10⁸ Nm⁻²) untuk setiap arah. Keputusan ini sangat berguna untuk pengesanan kawasan yang mana telah terjejas oleh penyakit itu.
ACKNOWLEDGEMENTS

The author extends his deepest gratitude to the chairman of supervisory committee, Prof. Dr. Haji Kaida Bin Khalid for his kindness, guidance, suggestion and his willingness to help.

The author also wishes to thank the member of the supervisory committee, Prof. Dr. Sidek Bin Abdul Aziz and late Prof. Dr Faridah Binti Abdullah for their advices, supervisions and guidance.

The author wishes to thank his father, his mother and his family members for their love and his beloved wife, Zaipah Binti Deraman support and encouragement as well as for always being there for him. The author also dedicated the thesis to his first son, Muhammad Danial Hakimie Bin Mohd Khairul Najmie.

Appreciation also given to my colleagues and my senior, Mr Ashry Bin Jusoh and staff members in the Applied Microwave Lab, Mr Roslim, Mr Zulambiar from past and present, for their guidance, help and support.
I certify that a Thesis Examination Committee has met on 14 April 2011 to conduct the final examination of Mohd Khairul Najmie Bin Mamat on his thesis entitled "Ultrasonic Characterisation of Oil Palm Trunk Infected by Ganoderma Boninense Disease" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Azmi bin Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Maarof bin Hj Abd Moksin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Halimah binti Mohamed Kamari, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Ibrahim Abu Talib, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Haji Kaida Khalid, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Haji Sidek Abdul Aziz, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Faridah Abdullah, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD KHAIRUL NAJMIE BIN MAMAT

Date: 14 April 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 Oil Palms Industry 1
 1.2 Problem Statement 3
 1.3 Objectives 6
 1.4 Thesis Outline 7

2 LITERATURE REVIEW
 2.1 Introduction 8
 2.2 Oil Palm Tree 9
 2.2.1 General Characteristics of Oil Palm 9
 2.2.2 Anatomical Review of Oil Palm Trunk 11
 2.3 Physical Characteristics of Oil Palm Tree 14
 2.3.1 Moisture Content of Oil Palm Trunk 14
2.3.2 Density of Oil Palm Trunk 15
2.3.3 Mechanical Characteristics of Oil Palm Trunk 17
2.3.4 Chemical Characteristics of Oil Palm Trunk 19

2.4 *Ganoderma boninense* 20
2.4.1 Basal Stem Rot Disease 20
2.4.2 Disease Emergence 20
2.4.3 Disease Symptoms 21
2.4.4 Causative Organism 24
2.4.5 Spreading of Disease 25
2.4.6 Histopathology 25
2.4.7 Disease Controls 26

2.5 Ultrasonic Studies on Wood 27
2.6 Ultrasonic Imaging 31

3 \textbf{ULTRASONIC THEORY} 32
3.1 History and Application of Ultrasonic Technique 32
3.2 Advantages and Disadvantages of Ultrasonic Technique 33
3.3 Ultrasonic Wave Production 35
3.3.1 Piezoelectric Effect 35
3.4 Attenuation and Scattering 38
3.5 Piezoelectric Transducer 39
3.6 Orthotropic Nature of Wood 43
3.7 Environmental Effect 44
3.8 Basic Definitions 45
3.8.1 Transit Time 45
3.8.2 Density of Wood 46
3.8.3 Determination Method Moisture
Content with Wet Basis and Dry Basis 46
3.8.4 Fiber Directions 47
3.8.5 Ultrasonic Pulse Velocity 48
3.9 Wave propagation in Anisotropic Media 48
3.10 Ultrasonic Bulk Wave Propagation in Orthotropic Media 50

4 METHODOLOGY 51
4.1 Nondestructive testing (NDT) – Ultrasonic 51
4.1.1 Echo Pulse Method 51
4.1.2 Resonance Method 52
4.1.3 Pulse Transmission Method 52
4.2 Decay Detection in Tree Trunk with Ultrasonic Transmission Method 54
4.3 Instrumentation 55
4.3.1 Chainsaw 55
4.3.2 Vertical Log Saw 56
4.3.3 Radial Arm Saw 56
4.3.4 Analytical Balance 57
4.3.5 Ultrasonic Tester V-Meter Mark II 57
4.3.5.1 System Description 60
4.3.5.2 Pulse Generator 61
4.3.5.3 CPU 61
4.3.5.4 Receiver Amplifier 62
4.3.5.5 Master Clock, ADC and Display 62
4.4 Others Equipment 62
4.5 Samples Preparations 63
4.5.1 Stage One 63
4.5.2 Stage Two 65
4.6 Error 69
 4.6.1 Random Error and Systematic Error 70
4.7 Summary 70

5 RESULTS AND DISCUSSIONS 71
 5.1 Introduction 71
 5.2 Ultrasonic Characteristics of Standing Oil Palm Tree 72
 5.2.1 Ultrasonic Velocity 72
 5.3 Density of Oil Palm Trunk for Cutting Samples 76
 5.4 Moisture Contents (Wet Basis) of Oil Palm Trunk for Cutting Samples 79
 5.5 Ultrasonic Characteristics of Oil Palm Trunk for Cutting Samples 80
 5.5.1 Ultrasonic Velocity 80
 5.5.2 Elasticity Constant of Oil Palm Trunk 85

6 CONCLUSIONS AND FUTURE DIRECTIONS 89
 6.1 Conclusions 89
 6.2 Future Directions 91

REFERENCES 93
APPENDICES 99
BIODATA OF STUDENT 108
LIST OF PUBLICATIONS 109