COPPER (Cu) AND ZINC (Zn) IN THE FOOD WEB OF INTERTIDAL MANGROVE ECOSYSTEM OF SUNGAI PULOH, MALAYSIA

UDECHUKWU BEDE EMEKA

FS 2011 95
COPPER (CU) AND ZINC (ZN) IN THE FOOD WEB OF INTERTIDAL MANGROVE ECOSYSTEM OF SUNGAI PULOH, MALAYSIA

By

UDECHUKWU BEDE EMEKA

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2011
COPPER (CU) AND ZINC (ZN) IN THE FOOD WEB OF INTERTIDAL MANGROVE ECOSYSTEM OF SUNGAI PULOH, MALAYSIA

By

UDECHUKWU BEDE EMEKA

March 2011

Chair: Prof. Ahmad Ismail, PhD

Faculty: Science

The purpose of this study was to assess the copper (Cu) and zinc (Zn) levels in the intertidal mangrove sediment of Sungai Puloh (SGP) and Sungai Tengi (SGT). Another aim was to assess the bioaccumulation pattern of Cu and Zn in a food web of Sungai Puloh intertidal mangrove ecosystem. For the first goal, intertidal surface sediment samples were collected from four stations in each of the two intertidal mangrove ecosystems of Sungai Puloh (SGP N 03° 04.786´ E 101° 23.903´) and Sungai Tengi (SGT N 03° 24.682, E 101° 9.971´) in Selangor, between January and March, 2009. For the second objective, different components of intertidal mangrove ecosystem (mangrove leaves, roots, phytodetritus-algae and detritus, surface sediment, crabs, snails and fish) were collected from six stations in Sg. Puloh mangrove between August and December, 2009. The samples were determined for Cu and Zn by using an air-acetylene flame Atomic absorption Spectrophotometer (Analyst 800 model, by Perkin-Elmer) and presented in µg/g dry weight basis. The results revealed that
both SGP and SGT with mean Zn concentrations (302.64 ± 5.33 µg/g) and
(870.73± 61.04 µg/g) respectively were contaminated by Zn, while only SGP
showed elevated levels of Cu (67.17±4.95µg/g), and receives more
anthropogenic inputs of Cu (27.0%) and Zn (63.4%) compared to SGT with
anthropogenic inputs of Cu (13.2%) and Zn (31.4%) with a significant difference
\((P < 0.05) \). It was also found in Sungai Puloh that there is a positive correlation
between the trophic chains with evidence of biomagnifications of Cu in \(Uca \)
annulipes – phytodetritus chain (biomagnifications factor BMF 2.83, \(r = 0.422 \ P
> 0.05 \)) and that of Zn was observed only in \(Periophthalmodon schlosseri \) gill –
\(U. \) annulipes chain (BMF 1.53, \(r = 0.130 \ P > 0.05 \)). In conclusion, Sungai Puloh
intertidal mangrove surface sediment is moderately contaminated and receives
more anthropogenic inputs of Cu and Zn compared to Sungai Tengi intertidal
mangrove surface sediments. Even though Cu and Zn accumulate in the
organisms and showed high concentration in SGP intertidal mangrove surface
sediment, it has not reached its toxic level in the food web of this intertidal
mangrove ecosystem. However, due to the economic importance of these
mangroves in supporting a variety of marine and terrestrial life including local
fishery activities, there is an urgent need to take actions by the appropriate
authorities to protect SGP intertidal mangrove ecosystem from anthropogenic
contaminants, while SGT intertidal mangrove ecosystem should be monitored
periodically.
Abstrak tesis ini telah di persembahkan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Master Sains

TEMBAGA (CU) DAN ZINK (ZN) DALAM WEB MAKANAN EKOSISTEM BAKAU, KAWASAN PASANG SURUT DI SUNGAI PULOH, MALAYSIA

Oleh

UDECHUKWU BEDE EMEKA

Mac 2011

Ketua: Prof. Ahmad Ismail, PhD

Fakulti: Sains

ditentukan dengan menggunakan Spektrofotometer Penyerapan Atom (model 800 Analyst, oleh Perkin-Elmer) dengan nyala asetilena dalam unit mg/g berat kering. Keputusan kajian menunjukkan kedua-dua kawasan SGP dan SGT telah tercemar dengan logam Zink (dengan purata kepekatan Zn bagi SGP= 302.64 ± 5.33 μg/g dan SGT= 870.73 ± 61.04 μg/g). Bagi logam kuprum, hanya sampel dari SGP menunjukkan terdapatnya peningkatan logam berkenaan (dengan purata kepekatan Cu bagi SGP= 67.17 ± 4.95μg/g) berbanding kawasan SGT. Ini menunjukkan SGP lebih terdedah kepada input antropogenik yang mengandungi lebih Cu (27.0%) dan Zn (63.4%) jika dibandingkan dengan SGT yang lebih rendah input Cu nya (13.2%) dan Zn (31.4%) (P < 0.05). Selanjutnya, pengkaji menemui korelasi positif di antara rantai trofik yang berbeza di SGP dan ini dibuktikan melalui biomagnifikasi Cu dalam rantaian makanan di antara Uca annulipes dengan fitodetritus (dengan faktor biomagnifikasi, BMF 2.83, r = 0.422 P > 0.05). Manakala biomagnifikasi Zn hanya jelas dilihat dalam rantaian makanan di antara Periophthalmodon schlosseri dan U. annulipes (dengan faktor biomagnifikasi, BMF 1.53, r = 0.130 P > 0.05). Kesimpulannya, ekosistem bakau di SGP terutamanya sedimen permukaan yang mengalami pasang surut ini telah tercemar dan menerima lebih input antropogenik Cu dan Zn berbanding ekosistem bakau di SGT. Walaupun logam-logam seperti Cu dan Zn telah terkumpul di dalam organism-organisma di kawasan bakau SGP dalam jumlah kepekatan yang tinggi, namun tahap pencemaran logam-logam terbabit belum mencapai tahap toksik dan masih selamat untuk digunakan. Walaupun begitu, kepentingan ekosistem bakau di kedua-dua kawasan terhadap hidupan liar dan
ekonomi tempatan tidak dapat dinafikan. Justeru, terdapat keperluan mendesak bagi pihak berkuasa untuk melindungi ekosistem bakau SGP daripada pencemaran berterusan oleh bahan-bahan pencemar antropogenik serta pemantauan berterusan di kawasan SGT.
ACKNOWLEDGEMENT

Firstly, I offer my unalloyed gratitude to my supervisor, Professor Ahmad Ismail, PhD, who provided me with immense support, brilliant and invaluable ideas throughout this research work. He was always patient with me and ready to proffer solutions to my problems in the course of writing this thesis. My master’s degree is attributed to my supervisor’s encouragement and resilient effort to make sure I did not lose focus, and without him this thesis would not have been completed. He even gave me a print out “NEVER SLEEP STUDY HARD” which I strategically pasted in my study room. I would wish to have him as my supervisor for any further research if am given the opportunity to do my PhD by UPM.

I will like to acknowledge the contributions of the following individuals, Cik Shahrizad being a senior colleague, gave me some tips on how to work efficiently and safe in ecology laboratory, she was always willing to advise and welcome me in her office.

Faid, Dilla, Huda, not only being my colleagues, but friends that understand the challenges of an international student would always engage me in scientific discussion whenever we had lunch together. They were always willing to assist me in their own various ways. Their friendliness helped me integrate so well to Malaysia culture. My regards to my senior colleagues, Buhari, Abo, Tooraj,
Dariosh, and Romeo who were very friendly and would always diffuse tensions in the laboratory by cracking jokes.

I would also like to thank the biology department for providing a convenient environment and suitable equipment and chemicals for my research. Also my warm regards to the school of graduate studies for organizing a workshop ‘SPSS PACKAGE’ which helped me in the choice of statistical test suitable for my data analysis.

Abdourahmane Diallo (Doura) has been a caring housemate, whom I fondly call “land lord”, took care of my shelter and motivated me in so many ways. Uche, my friend a master’s student in University Malaya, deserves acknowledgment for helping me fix my computer and sharing his research ideas with me. Karen is a good and understanding friend, she provided me with printing materials when I ran short of mine. She would also drive me to school whenever necessary.

I owe gratitude to my parents, brothers and sisters for their moral support and encouragement, with special thanks to my immediate elder sister, Ijeoma (Rev. Sr. Christino Maris) who believed that I can achieve a lot through academics and gave me all round support through out this study.

Finally, I would always remain indebted to my immediate elder brother, Victor who took it as personal challenge and responsibility that I get to any height I
want in academics. He even denied himself of his pleasurable posh SUV car just to make sure that finance did not stop me from completing my studies. Apart from financial support he would always encourage me to be strong and hopeful as he had first hand experience as an international student in the USA. In fact he remains my role model and an inspiration when it comes to academics because he never gave up.
Approval sheet 1

I certify that an Examination Committee has been set on the 18th of March, 2011 to conduct the final examination of Udechukwu Bede Emeka on his Masters thesis entitled “Copper (Cu) and Zinc (Zn) in the food web of intertidal mangrove ecosystem of Sungai Puloh, Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master of Science Degree.

Members of the Examination Committee were as follows:

Muskhazli bin Mustafa, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Hishamuddin bin Omar, PhD
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Nor Azwady bin Abd. Aziz, PhD
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Kamaruzzaman bin Hj. Yunus, PhD
Professor and Dean
Kulliyyah of Science
International Islamic University Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 June 2011
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as a fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ahmad Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Aziz Arshad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for the quotations which have been duly acknowledged. I also declare that it had not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

UDECHUKWU BEDE EMEKA

Date: 18 March 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Aims and Objectives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Issues</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Scope of Study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1 Mangroves in Malaysia</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Food web in the mangrove ecosystem</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.3 Factors that affect the mangrove ecosystem</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Oxygen</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Salinity</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4 Anthropogenicity of heavy metals in the mangrove ecosystem</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.5 Macro benthos in the mud flats and detritus</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Uca annulipes</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Telescopium telescopium, (Linnaeus, 1758)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Periophthalmodom schlosseri, (Pallas, 1770)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.6 Bioaccumulation</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Factors affecting bioaccumulation</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.6.2 Bioavailability and bioconcentration factors(BCF)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.6.3 Factors affecting bioavailability</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.6.4 Organic matter in sediments</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.7 Metals and Algae</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.8 The role of fiddler crabs in the intertidal mangrove ecosystem</td>
<td>36</td>
</tr>
</tbody>
</table>

xiii
2.9 Heavy metals

2.9.1 Copper (Cu) 40
2.9.2 Zinc (Zn) 41

3 MATERIALS AND METHODS

3.1 Study area 43
3.2 Sampling
 3.2.1 Surface sediment 54
 3.2.2 Biological samples 54
3.3 Sample preparation 55
 3.3.1 Phytodetritus 55
3.4 Sample preparation and metal analysis 56
 3.4.1 The direct aqua regia 56
 3.4.2 The SET (Sequential Extraction Technique) 56
3.5 Metal determination 59
3.6 Quality control 59
3.7 Geoaccumulation Index (I_{geo}) 60
3.8 Statistical analysis 62
 3.8.1 Bioconcentration model used 63

4 RESULTS

4.1 Cu and Zn concentrations in surface sediments of Sg. Puloh and Sg. Tengi intertidal mangrove ecosystem 64
4.2 Contamination assessment of Sg. Puloh and Sg. Tengi surface sediments using geoaccumulation index (I_{geo}) 64
4.3 Classification of surface sediments of Sungai Puloh and Sungai Tengi intertidal mangroves ecosystem using Hong Kong sediment classification guidelines 67
4.4 Geochemical fractions of Cu and Zn in surface sediments of Sg. Puloh and Sg. Tengi intertidal mangroves areas 67
4.5 The levels of Cu and Zn in some components of mangrove ecosystem from different stations in Sungai Puloh 70
4.6 The total mean concentration (μg/g) of Cu and Zn in biological samples from intertidal mangrove ecosystem of Sungai Puloh 71
4.7 Bioaccumulation factors and trophic relationship in food chains of Sg. Puloh intertidal mangrove ecosystem 73
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>5.1 General discussion</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSION AND RECOMMENDATION</td>
<td>94</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

APPENDICES

BIODATA OF STUDENT