On the Higher Order Edge-Connectivity of Complete Multipartite Graphs

Y.H. PENG*, C.C. CHEN and K.M. KOH

Department of Mathematics National University of Singapore Kent Ridge, Singapore 05-11

Key words: kth order edge-connectivity; efficient k-separation; complete multipartite graph; edge-toughness.

ABSTRAK

Biarkan G sebagai suatu graf terhubung yang mempunyai $p \ge 2$ titik. Untuk k = 1, 2, ..., p - 1, kehubungangaris peringkat k yang diberi lambang $\lambda^{(\kappa)}$ (G), ditakrifkan sebagai bilangan terkecil garis-garis yang apabila dikeluarkan daripada G akan meninggalkan suatu graf yang terdiri daripada k + 1 komponen. Dalam artikel ini kita akan menentukan kuantiti $\lambda^{(\kappa)}$ (G_n) bagi sebarang graf multipartit lengkap G_n. Sebagai akibatnya kita perolehi syarat perlu dan cukup supaya graf G_n dapat difaktorkan menjadi pohon-pohon janaan.

ABSTRACT

Let G be a connected graph with $p \ge 2$ vertices. For k = 1, 2, ..., p - 1, the kth order edge-connectivity of G, denoted by $\lambda^{(\kappa)}$ (G), is defined to be the smallest number of edges whose removal from G leaves a graph with k + 1 connected components. In this note we determine $\lambda^{(\kappa)}$ (G_n) for any complete multipartite graph G_n. As a consequence, we give a necessary and sufficient condition for the graph G_n to be factored into spanning trees.

1. INTRODUCTION

Let G be a connected simple graph of order pand size q. Denote by V(G) and E(G) the vertex set and edge set of G respectively. The edge*connectivity* $\lambda = \lambda(G)$ of G is defined to be the smallest number of edges whose removal from G results in a disconnected or trivial graph. This notion has a natural generalization. Following Goldsmith *et al.* (1980), for each k = 0, 1, ..., p - 1, the kth order *edge-connectivity* of G, denoted by $\lambda^{(\kappa)}$ (G), is defined as the minimum number of edges of G whose removal increases the number of components of G by k. Note that $\lambda^{(0)}(G) = 0, \ \lambda^{(1)}(G) = \lambda(G) \text{ and } \lambda^{(p-1)}(G) = q.$ The properties of $\lambda^{(\kappa)}(G)$ were studied previously in Boesch and Chen (1978), Goldsmith (1980 and 1981), Goldsmith et al. (1980) and Sampathkumar (1984).

It is easy to see that for any tree T, $\lambda^{(\kappa)}(T) = k$. Furthermore, since any connected graph G contains a spanning tree, $\lambda^{(\kappa)}(G) \ge k$. It was proved in Peng *et al.* (1988) that $\lambda^{(\kappa)}(K_p) = \frac{1}{2} k(2_p - k - 1)$ for each k = 0, 1, ..., p - 1. In this note we shall determine the kth order edge-connectivity of a complete *n*-partite graph and then use the result to derive a necessary and sufficient condition for a complete n-partite graph to be factored into spanning trees.

Throughout this article, we write $G_n = K_n(m_1, m_2, ..., m_n), n \ge 2$, to denote a complete n-partite graph with n partite sets $V_1, V_2, ..., V_n$ such that $|V_i| = m_i \ge 1$ for each i = 1, 2, ..., n. For the sake of convenience, we always assume

 $m_1 \leq m_2 \leq \ldots \leq m_n.$

A graph G is called a *complete multipartite* graph if $G \cong G_n$ for some integer $n \ge 2$.

^{*} On leave from the University of Agriculture, Malaysia.

For those graph-theoretic terms used but not defined here we refer to Behzad *et al.* (1979).

2. EFFICIENT SEPARATION

Let *G* be a connected graph of order *p*, and *k* be an integer such that $1 \le k \le p$ -1. Following Goldsmith *et al.* (1980) again, by an *efficient k*-separation of *G*, we mean a removal of $\lambda^{(\kappa)}(G)$ edges from *G* so that *G* is separated into k + 1 components. Call a component of a graph *trivial* if it is a singleton, and *non-trivial* otherwise.

It was pointed out in Peng *et al.* (1988) that every efficient *k*-separation of $K_p(1 \le k \le p-1)$ always results in at least *k* trivial components. In this section we shall study the possible situations after performing an efficient separation on G_p .

Let *A* and *B* be two subsets of V(G). We denote by $E_G(A,B)$ the set of edges of *G* each joining a vertex of *A* to a vertex of *B*, and by $e_G(A,B)$ the number of edges in $E_G(A,B)$. In particular, we write $e_G(A)$ for $e_G(A,A)$, and $e_G(v,B)$ for $e_G(\{v\},B\}$ where $v \in V(G)$. The minimum degree of *G* is denoted by $\delta(G)$, i.e. $\delta(G) = \min\{\deg_G(v) \mid v \in V(G)\}$.

First of all, we have

LEMMA 1. The number of edges of the graph G_n needed to be removed to separate G_n into two nontrivial components is greater than $\delta(G_n)$, except when $G_n = K_2(2,2)$, in which case, the number is equal to $\delta(G_n)$.

Proof. We proceed by induction on *n*. For the case n = 2, let G_2 , $G_2 \neq K_2(2,2)$, be separated into two non-trivial components, and let e^* denote the number of edges removed in this separation. We may assume that both partite sets V_1 and V_2 of G_2 are divided into two sets. Let V_1 be divided into *a* and *b* vertices, and V_2 be divided into *c* and *d* vertices. (Figure 1(*a*)) Then *a*, *b*, *c* and *d* are positive. Since $G_2 \neq K_2(2,2)$, not all of them are equal to 1. Thus $e^* = ad + bc \ge a + b$. If ad + bc = a + b, then c = d = 1 since *a*, *b*, *c*, *d* are positive integers. This implies m_2 = c + d = 2. Since $m_2 \ge m_1 \ge 2$, $m_1 = 2$. But this contradicts our assumption that $G_2 \ne K_2(2,2)$. Thus, we have $e^* > a + b = \delta(G_5)$.

Now, suppose that the statement holds for any graph G_{n-1} ($n \ge 3$). We shall show that the statement is also true for any G_n . Assume that $G_n \ne K_0(2,2)$, and let G_n be separated into two non-trivial components Q_1 and Q_2 . Except for the two cases of separation shown in *Figures* I(b) and (c) for n = 3 and n = 4 respectively, it can be checked that there is always a partite set V_r of G_n such that $(Q_1 \cup Q_2) - V_r$ still consists of two non-trivial components $Q_1 = Q_1 - V_r$ and $Q_2 =$ $Q_2 - V_r$ where V_r is separated into two sets V_r and V_r in that separation. (*Figure 1(d)*) Note that V_r or V_r may be empty.

So, the complete (n-1)-partite graph $G' = G_n - V_r$ is separated into two non-trivial components Q_1 and Q_2 . Let e' denote the number of edges removed in this separation of G', and e^* denote the number of edges deleted to separate G_n into Q_1 and Q_2 . Then

$$e^* = e^* + e_{G_n}(V_r^*, V(Q_2^*)) + e_{G_n}(V_r^*, V(Q_1^*)).$$

By induction hypothesis,

$$e' > \delta(G').$$

But

$$\delta(G') = \begin{cases} \delta(G_n) - m_r & \text{if } r \neq n \\ \delta(G_n) - m_{n-1} & \text{if } r = n, \end{cases}$$

and

$$e_{G_{n}}(V_{r}^{*}, V(Q_{2}^{*})) + e_{G_{n}}(V_{r}^{*}, V(Q_{1}^{*})) >$$

$$\begin{cases} m_{r} & \text{if } r \neq n \\ m_{n-1} & \text{if } r = n. \end{cases}$$

Therefore $e^* > \delta(G_n)$, as required.

It remains to consider the two exceptional cases.

Case (i). The separation of G_3 as shown in Figure 1(b).

Let the partite set V_k be divided into a and b vertices, and let e^* denote the number of edges removed in this separation. Then

$$e^* = m_{1}b + m_{1}m_{1} + m_{1}a$$

$$= m_{i}(b + m_{j}) + m_{a}a$$

> $m_{i} + m_{j}$ (since $b + m_{j} \ge 2, a \ge 1$)
 $\ge \delta(G_{u}),$

as required.

Case (ii). The separation of G_4 as shown in Figure 1(c).

Let e^* denote the number of edges deleted in this separation. Then

$$e^{*} = m_{i}m_{j} + m_{i}m_{k} + m_{j}m_{l} + m_{k}m_{i} = m_{i}(m_{j} + m_{k}) + m_{j}m_{l} + m_{k}m_{i} > m_{i} + m_{j} + m_{k} > \delta (G_{i}).$$

The proof is now complete. \Box

We are now ready to prove the following main result of this section.

THEOREM 1. Let p be the order of the graph G_n , and k be any integer with $1 \le k \le p-1$. If G_n is separated into components by an efficient k-separation, then

either (i) at least k of the components are trivial, or (ii) k - 1 of the components are trivial, and the other two are K_i.

Proof. Suppose there are two non-trivial components Q_1 and Q_2 of G_n after the removal of $\lambda^{(\kappa)}(G_n)$ edges in an efficient *k*-separation of G_n . We shall show that the induced subgraph $H = \langle Q_2 \cup Q_2 \rangle_{G_n}$ is $K_2(2,2)$.

We first note that *H* is a complete multipartite subgraph of G_n . If $H \neq K_2(2,2)$, then by Lemma 1, the number of edges removed to separate *H* into two components Q_1 and Q_2 is greater than $\delta(H)$. But $\delta(H)$ is equal to the number of edges removed to separate *H* into a trivial component {v}, and a component $H - \upsilon$ where $\upsilon \in V(H)$ such that $\deg_{II}(\upsilon) = \delta(H)$. Thus G_n can be separated into k+1 components by removing less than $\lambda^{(\kappa)}(G_n)$ edges. This contradicts the definition of $\lambda^{(\kappa)}(G_n)$. Therefore $Q_1 = Q_2 = K_2$ and $H = K_2(2,2)$.

Now, suppose that there is another nontrivial component Q_3 of G_n after the removal of $\lambda^{(\kappa)}(G_n)$ edges in an efficient *k*-separation of G_n . Then, by the argument above, we conclude that $H_1 = \langle Q_2 \cup Q_3 \rangle_{G_n}$ and $H_2 = \langle Q_2 \cup Q_3 \rangle_{G_n}$ are all isomorphic with $K_2(2,2)$. Thus, $Q_3 = K_2$ and the number of edges removed to separate $H^* = \langle Q_1 \cup Q_2 \cup Q_3 \rangle$ into three components Q_1 , Q_2 and Q_3 is six. However, if we delete all the five edges of H^* which are incident with the two vertices of Q_3 , we also separate H^* into three components. But this contradicts the minimality of $\lambda^{(\kappa)}(G_n)$. The result thus follows. \Box

Remark. We note that the result (ii) in Theorem 1 can occur only when $G_n = K_2(m_1, m_2)$, where $m_1, m_2 \ge 2$.

3. HIGHER ORDER EDGE-CONNECTIVITY

In this section we shall apply Theorem 1 to determine the kth order edge-connectivity of any complete *n*-partite graph.

We begin with the following result.

LEMMA 2. Let $T \supseteq V(G_n)$ such that $|T| = t \ge 1$ and $e_{G_n}(T) + e_{G_n}(T,G_n - T) = \lambda^{(1)}(G_n)$. Then (i) there exists $\omega \in T$ such that $\deg_{G_n}(\omega) = \delta(G_n)$, and

(ii) if $T' = T - \{\upsilon\}$ and $G' = G_n - \upsilon$, where $\upsilon \in T$, then $e_{C'}(T') + e_{C'}(T', G' - T') = \lambda^{(i-1)}(G)$.

Note. By the assumption of Lemma 2, we are, indeed, given an efficient *t*-separation of G_n which separates it into t + 1 components $\{x\}$ ($x \in T$) and $G_n - T$. The subgraph $G_n - T$ must be connected as $\lambda^{(i)}(G_n) < \lambda^{(t+1)}(G_n)$.

Proof. (i) We suppose the contrary. Then no element of T is in V_n or in any other partite set V_i of G_n such that $|V_i| = |V_n|$ Let $v \in T$ and $T^* = T - \{v\}$. Consider the graph $G_n - T^*$. Note that $G_n - T^*$ is a complete multipartite subgraph of G_n . So V_n is one of its partite sets. Let $u \in$ V_n and $u \in V^*$ where V^* is also a partite set in the partition of $G_n - T^*$. Since $|V_n| > |V^*|$, we have

$$e_{G_n}(u, G_n - T^*) < e_{G_n}(u, G_n - T^*).$$

Therefore (Figure 2)

$$\begin{split} e_{G_{n}}(T^{*}\cup\{u\}) &+ e_{G_{n}}(T^{*}\cup\{u\}, G_{n}-(T^{*}\cup\{u\})) \\ &= e_{G_{n}}(T^{*}) + e_{G_{n}}(T^{*}, G_{n}-T^{*}) + e_{G_{n}}(u, G_{n}-T^{*}) \\ &< e_{G_{n}}(T^{*}) + e_{G_{n}}(T^{*}, G_{n}-T^{*}) + e_{G_{n}}(v, G_{n}-T^{*}) \\ &= e_{G_{n}}(T^{*}\cup\{v\}) + e_{G_{n}}(T^{*}\cup\{v\}, G_{n}-(T^{*}\cup\{v\})) \\ &= e_{G_{n}}(T) + e_{G_{n}}(T, G_{n}-T) \\ &= \lambda^{(t)}(G), \end{split}$$

which contradicts the minimality of $\lambda^{(i)}(G_n)$. Thus (i) follows.

(ii) Since |T'| = t - 1, by the minimality of $\lambda^{(t-1)}(G')$, we have

$$e_{G'}(T') + e_{G}(T', G' - T') \ge \lambda^{(t-1)}(G').$$

If the equality does not hold, then (Figure 3)

$$\begin{split} \lambda^{(i)}(G_{n}) &= e_{G_{n}}(T) + e_{G_{n}}(T, G_{n} - T) \\ &= e_{G}(T') + e_{G}(T', G' - T') + \deg_{G_{n}}(u) \\ &> \lambda^{(i-1)}(G') + \deg_{G_{n}}(u) \\ &\geq \lambda^{(i)}(G_{n}), \end{split}$$

which is impossible. \Box

Let $H_k = \{H_0, H_1, ..., H_k\}$ be a family of subgraphs of G_n defined as follows: $H_0 = G_n$ and for i = 1, 2, ..., k, $H_i = H_{i-1} - v_i$ for some $v_i \in V(H_{i-1})$ such that $\deg_{H_{i-1}}(v_i) = \delta(H_{i-1})$.

We shall now apply Theorem 1 and Lemma 2 to prove the following result.

LEMMA 3. Let p be the order of the graph G_n , and k be any integer satisfying $1 \le k \le p$ -1. Then there exists a set of vertices S of G_n such that |S| = k and $e_{G_n}(S) + e_{G_n}(S, G_n - S) = \lambda^{(k)}(G_n)$.

Furthermore, $S = \{v_1, v_2, ..., v_k\} = V(G_n) - V(H_k)$ where H_k is a member of some H_k of G_n .

Proof. To prove the first part, we show that, for each k = 1, 2, ..., p - 1, there is an efficient *k*-separation of G_n such that, after performing

this separation, at least k of the components are trivial. By Theorem 1, there are at most two non-trivial components Q_1 and Q_2 in any efficient k-separation of G_n , and $H = \langle Q_1 \cup Q_2 \rangle = K_2(2,2)$. But the number of edges removed to separate H into Q_1 and Q_2 is equal to the number of edges whose removal separates H into a trivial component and a $K_2(1,2)$ component. This completes the proof of the first part.

By Lemma 2(i), there exists $v_1 \in S$ such that $\deg_{G_n}(v_1) = \delta(G_n)$. If k > 1, let us write $S_1 = S - \{v_1\}$ and $H_1 = G_n - v_1$. By Lemma 2(ii), we have

$$e_{H_1}(S_1) + e_{H_1}(S_1, H_1 - S_1) = \lambda^{(k-1)}(H_1).$$

Note that H_1 is also a complete multipartite graph, and $|S_1| = k - 1$. Thus by Lemma 2(i), there exists $\upsilon_2 \in S_1$ such that $\deg_{H_1}(\upsilon_2) = \delta(H_1)$. If k > 2, by using the same argument as above, we conclude that for i = 3, 4, ..., k, S_i -1 contains υ_i such that $\deg_{H_i-1}(\upsilon_i) = \delta(H_{i-1})$ where $H_i = H_{i-1} - \upsilon_i$. The proof is now complete. \Box

We are now in a position to establish the main result of this note.

THEOREM 2. Let p be the order of the graph G_p . Then for k = 1, 2, ..., p - 1,

$$\lambda^{(k)}(G_n) = \sum_{H_i \in H_{k-1}} \delta(H_i)$$

for some H_{k-1} of G_n .

Proof. By Lemma 3, there exists $S \subseteq V(G_n)$ such that |S| = k and $\lambda^{(k)}(G_n) = e_{G_n}(S) + e_{G_n}(S, G_n - S)$. Since $S = \{v_1, v_2, ..., v_k\}$ is such that for i = 1, 2, ..., k, $\deg_{H_{i,1}}(v_i) = \delta(H_{i,1})$, we have

$$E_{G_{n}}(S) \cup E_{G}(S, G_{n} - S)$$

= $\bigcup_{i=0}^{k-1} E_{G_{n}}(v_{i+1}, H_{i}).$

Thus,

$$\lambda^{\binom{k}{k}}(G_n) = e_{G_n}(S) + e_{G_n}(S, G_n - S)$$
$$= \sum_{i=0}^{k-1} e_{G_n}(v_{i+1}, H_i) = \sum_{i=0}^{k-1} \delta(H_i),$$

as required. \Box

4. SPANNING TREE FACTORIZATION

It is known that a complete graph K_p can be factored into spanning trees (indeed spanning paths) if and only if p is even (see for instance,

Behzad *et al.* (1979), p. 168). In the following theorem we give a necessary and sufficient condition for the graph G_n to be factored into spanning trees.

THEOREM 3. The complete n-partite graph $K_n(m_1, m_2, ..., m_n)$ can be factored into spanning trees if and only if

$$\sum_{ij=1}^{n} m_{i} m_{j} = k \left(\sum_{i=1}^{n} m_{i} - 1 \right)$$

for some positive integer k.

COROLLARY. The graph $K_2(m,n)$ is spanning tree factorizable for the following integers m and n $(n \ge m)$:

- (i) m = 1, and $n \ge 1$;
- (ii) $m \equiv 1 \pmod{2}$, m > 1, and n = m + 1;
- (iii) m > 2, and $n = (m 1)^2$;
- (iv) m > 4, and n = (m 1)(m 2)/2;
- (v) m = ab and n = (ab 1)(b 1) where a and b are integers > 2.

COROLLARY 2. (i) The graph $K_n(m - 1, m, m, ..., m)$ is spanning tree factorizable if and only if (n - 1) $m \equiv 0 \pmod{2}$.

(ii) The graph $K_n(1,m,m,...,m)$ is spanning tree factorizable if and only if $nm \equiv 0 \pmod{2}$.

(iii) The graph $K_n(m,m,...,m)$ is spanning tree factorizable if and only if m = 1 and n is even.

Denote by $\omega(G)$ the number of components of *G*. A subset X of *E*(*G*) is called an *edgecutset* of *G* if $\omega(G - X) > 1$. Following Peng *et al.* (1988), the *edge-toughness* of *G*, denoted by $\tau_1(G)$, is defined as

$$\tau_1(G) = \min \left\{ \frac{|X|}{\omega(G-X)-1} | X \text{ is an} \right\}$$

edge-cutset of $G \right\}$

The above definition of $\tau_1(G)$ is, as a matter of fact, motivated by the following result due to Nash-Williams (1961) and Tutte (1961) independently.

THEOREM A. A connected graph G has s edgedisjoint spanning trees if and only if $|X| \ge s(\omega (G - X) - 1)$ for each $X \subseteq E(G)$.

It follows from Theorem A that a connected graph *G* has *k* edge-disjoint spanning trees if and only if $\tau_1(G) \ge k$. Thus Theorem 3 is an immediate consequence of the following result.

THEOREM 4.
$$\tau_1(K_n(m_1, m_2, ..., m_n))$$

$$=\frac{\sum_{ij=1}^{n}m_{i}m_{j}}{\sum_{i=1}^{n}m_{i}-1}$$

To prove the above theorem we shall make use of the following result which was obtained in Peng *et al.* (1988) as a corollary of a more general theorem.

For each i = 1, 2, ..., |V(G)| - 1, we write

$$\Delta \lambda_{i}(G) = \lambda^{(i-1)}(G) - \lambda^{(i)}(G).$$

THEOREM B. Let G be a connected graph of order p and size q. If the sequence $(\Delta_i(G) \mid 1 \le i \le p-1)$ is non-increasing, i.e. $\Delta_i(G) \ge \Delta_{i+1}(G)$ for each i = 1,2,...,p-2, then $\tau_1(G) = q/(p-1)$.

Proof of Theorem 4. By Theorem B, we only need to show that the sequence (Δ_i(G_n) | 1 ≤ $i \le p - 1$) is non-increasing. By Theorem 2, Δ_i(G_n) = λ⁽ⁱ⁾(G_n) - λ⁽ⁱ⁻¹⁾(G_n) = δ(H_{i-1}). Note that for i = 1,2,...,p-1, H_i = H_{i-1} - v_i where deg_{Hi-1}(v_i) = d(H_{i-1}) and v_i is adjacent to every vertex of H_i. , except those in the partite set (of the partition of H_{i-1}) that v_i belongs to. So, it is clear that for i = 1,2,...,p-1, δ(H_i) ≤ δ(H_{i-1}). Therefore, the sequence (Δ_i(G_n) | 1 ≤ i ≤ p - 1) = (δ(H_i) | 0 ≤ i ≤ p - 2) is non-increasing. □

REFERENCES

- BEHZAD M., G. CHARTRAND, and L. LESNIAK-FOSTER. 1979. *Graphs and Digraphs*. Belmont: Wadsworth.
- BOESCH F.T. and S. CHEN. 1978. A Generalization of Line Connectivity and Optimally Invulnerable Graphs. *SIAM J. Appl. Math.* **34:** 657-665.
- GOLDSMITH D.L. 1980. On the Second Order Edge-Connectivity of a Graph. In Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton. Congressus Numerantium **29:** 479-484.
- . 1981. On the N-th Order Edge-Connectivity of a Graph. In Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing. Vol. 1 Boca Raton, Congressus Numerantium **32:** 375-382.
- GOLDSMITH D.L., B.MANVEL and V.FABER. 1980. Separation of Graphs into Three Components by the Removal of Edges. J. Graph Theory 4: 213-218.
- NASH-WILLIAMS C.ST.J.A. 1961. Edge-Disjoint Spanning Trees of Finite Graphs. J. London Maths. Soc. 36: 445-450.

- PENG Y.H., C.C. CHEN and K.M. KOH. 1988. On Edge-Toughness of a Graph I. SouthEast Asian Mathematical Bulletin 12(2):109-122.
- SAMPATHKUMAR E. 1984. Connectivity of a Graph - A Generalization. *J. Comb. Inf. and Sys. Sc.* 9(2): 71-78.
- TUTTE W.T. 1961. On the Problem of Decomposing a Graph into n Connected Factors. J. London Maths. Soc. 36: 221-230.

(Received 12 July, 1988)