On the Higher Order Edge-Connectivity of Complete Multipartite Graphs

Y.H. PENG*, C.C. CHEN and K.M. KOH
Department of Mathematics
National University of Singapore
Kent Ridge, Singapore 05-11

Key words: kth order edge-connectivity; efficient k-separation; complete multipartite graph; edge-toughness.

Abstract

ABSTRAK Biarkan G sebagai suatu graf terhubung yang mempunyai $p \geq 2$ titik. Untuk $k=1,2, \ldots, p-1$, kehubungangaris peringkat k yang diberi lambang $\lambda^{(k)}(G)$, ditakrifkan sebagai bilangan terkecil garis-garis yang apabila dikeluarkan daripada G akan meninggalkan suatu graf yang terdiri daripada $k+1$ komponen. Dalam artikel ini kita akan menentukan kuantiti $\lambda^{(k)}\left(G_{n}\right)$ bagi sebarang graf multipartit lengkap G_{n}. Sebagai akibatnya kita perolehi syarat perlu dan cukup supaya graf G_{n} dapat difaktorkan menjadi pohon-pohon janaan.

Abstract

Let G be a connected graph with $p \geq 2$ vertices. For $k=1,2, \ldots, p-1$, the $k^{\text {lh }}$ order edge-connectivity of G, denoted by $\lambda^{(x)}(G)$, is defined to be the smallest number of edges whose removal from G leaves a graph with $k+1$ connected components. In this note we determine $\lambda^{(\kappa)}\left(G_{n}\right)$ for any complete multipartite graph G_{n}. As a consequence, we give a necessary and sufficient condition for the graph G_{n} to be factored into spanning trees.

1. INTRODUCTION

Let G be a connected simple graph of order p and size q. Denote by $V(G)$ and $E(G)$ the vertex set and edge set of G respectively. The edgeconnectivity $\lambda=\lambda(G)$ of G is defined to be the smallest number of edges whose removal from G results in a disconnected or trivial graph. This notion has a natural generalization. Following Goldsmith et al. (1980), for each $k=0$, $1, \ldots, p-1$, the kth order edge-connectivity of G, denoted by $\lambda^{(x)}(G)$, is defined as the minimum number of edges of G whose removal increases the number of components of G by k . Note that $\lambda^{(0)}(G)=0, \lambda^{(1)}(G)=\lambda(G)$ and $\lambda^{(p-1)}(G)=q$. The properties of $\lambda^{(k)}(G)$ were studied previously in Boesch and Chen (1978), Goldsmith (1980 and 1981), Goldsmith et al. (1980) and Sampathkumar (1984).

It is easy to see that for any tree $T, \lambda^{(\kappa)}(T)$ $=k$. Furthermore, since any connected graph G contains a spanning tree, $\lambda^{(k)}(G) \geq k$. It was proved in Peng et al. (1988) that $\lambda^{(\mathrm{K})}\left(K_{t}\right)=\frac{1}{2} k\left(2_{p}\right.$ $-k-1$) for each $k=0,1, \ldots, p-1$. In this note we shall determine the kth order edge-connectivity of a complete n-partite graph and then use the result to derive a necessary and sufficient condition for a complete n-partite graph to be factored into spanning trees.

Throughout this article, we write $G_{\mathrm{n}}=$ $K_{\mathrm{n}}\left(m_{1}, m_{2}, \ldots, m_{n}\right), n \geq 2$, to denote a complete n-partite graph with n partite sets $V_{1}, V_{2}, \ldots, V_{\mathrm{n}}$ such that $\left|V_{i}\right|=m_{i} \geq 1$ for each $i=1,2, \ldots, n$. For the sake of convenience, we always assume

$$
m_{1} \leq m_{2} \leq \ldots \leq m_{n} .
$$

A graph G is called a complete multipartite graph if $G \cong G_{\mathrm{n}}$ for some integer $n \geq 2$.

[^0]For those graph-theoretic terms used but not defined here we refer to Behzad et al. (1979).

2. EFFICIENT SEPARATION

Let G be a connected graph of order p, and k be an integer such that $1 \leq k \leq p$-1. Following Goldsmith et al. (1980) again, by an efficient k separation of G, we mean a removal of $\lambda^{(k)}(G)$ edges from G so that G is separated into $k+1$ components. Call a component of a graph trivial if it is a singleton, and non-trivial otherwise.

It was pointed out in Peng et al. (1988) that every efficient k-separation of $K_{p}(1 \leq k \leq p$ 1) always results in at least k trivial components. In this section we shall study the possible situations after performing an efficient separation on G_{n}.

Let A and B be two subsets of $V(G)$. We denote by $E_{G}(A, B)$ the set of edges of G each joining a vertex of A to a vertex of B, and by $e_{G}(A, B)$ the number of edges in $E_{G}(A, B)$. In particular, we write $e_{G}(A)$ for $e_{G}(A, A)$, and $e_{G}(v, B)$ for $e_{G}(\{v\}, \mathrm{B})$ where $v \in V(G)$. The minimum degree of G is denoted by $\delta(G)$, i.e. $\delta(G)=$ $\min \left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\}$.

First of all, we have
Lemma 1. The number of edges of the graph G_{n} needed to be removed to separate G_{n} into two nontrivial components is greater than $\delta\left(G_{\mathrm{n}}\right)$, except when $G_{\mathrm{n}}=K_{2}(2,2)$, in which case, the number is equal to $\delta\left(G_{\mathrm{n}}\right)$.

Proof. We proceed by induction on n. For the case $n=2$, let $G_{2}, G_{2} \neq K_{2}(2,2)$, be separated into two non-trivial components, and let e^{*} denote the number of edges removed in this separation. We may assume that both partite sets V_{1} and V_{2} of G_{2} are divided into two sets. Let V_{1} be divided into a and b vertices, and V_{2} be divided into c and d vertices. (Figure $1(a)$) Then a, b, c and d are positive. Since $G_{2} \neq K_{2}(2,2)$, not all of them are equal to 1 . Thus $e^{*}=a d+$ $b c \geq a+b$. If $a d+b c=a+b$, then $c=d=1$ since a, b, c, d are positive integers. This implies m_{2} $=c+d=2$. Since $m_{2} \geq \mathrm{m}_{1} \geq 2, m_{1}=2$. But this contradicts our assumption that $G_{2} \neq K_{2}(2,2)$. Thus, we have $e^{*}>a+b=\delta\left(G_{2}\right)$.

Now, suppose that the statement holds for any graph $G_{\mathrm{n}-1}(\mathrm{n} \geq 3)$. We shall show that the statement is also true for any G_{n}. Assume that $G_{\mathrm{n}} \neq K_{2}(2,2)$, and let G_{n} be separated into
two non-trivial components Q_{1} and Q_{2}. Except for the two cases of separation shown in Figures $l(b)$ and (c) for $n=3$ and $n=4$ respectively, it can be checked that there is always a partite set V_{r} of G_{n} such that $\left(Q_{\mathrm{r}} \cup Q_{2}\right)-V_{\mathrm{r}}$ still consists of two non-trivial components $Q_{1}=Q_{-}-V_{r}$ and $Q_{2}=$ $Q_{2}-V_{r}^{i}$ where V_{r} is separated into two sets V_{r} and V_{r} in that separation. (Figure 1(d)) Note that V_{r} or V_{r} may be empty.

Figure 1.
So, the complete (n-1)-partite graph $G=$ $G_{\mathrm{n}}-V_{\mathrm{r}}$ is separated into two non-trivial components Q_{i} and Q_{2}. Let e^{\prime} denote the number of edges removed in this separation of G, and e^{*} denote the number of edges deleted to separate G_{n} into Q_{A} and Q_{2}. Then

$$
e^{*}=e^{\prime}+e_{C_{\mathrm{n}}}\left(V_{\mathrm{r}}, V\left(Q_{2}\right)\right)+e_{C_{\mathrm{n}}}\left(V_{\mathrm{r}}, V\left(Q_{1}\right)\right) .
$$

By induction hypothésis,

$$
e^{\prime}>\delta\left(G^{\prime}\right)
$$

But

$$
\delta\left(G^{\prime}\right)=\left\{\begin{array}{l}
\delta\left(G_{\mathrm{n}}\right)-m_{\mathrm{r}} \text { if } r \neq n \\
\delta\left(G_{\mathrm{n}}\right)-m_{\mathrm{n}-1} \text { if } r=n,
\end{array}\right.
$$

and

$$
\begin{gathered}
e_{G_{\mathrm{n}}}\left(V_{\mathrm{r}}, V\left(Q_{\mathrm{2}}^{\prime}\right)\right)+e_{G_{\mathrm{G}}}\left(V_{\mathrm{r}}^{\prime}, V\left(Q_{\mathrm{i}}\right)\right)> \\
\left\{\begin{array}{l}
m_{\mathrm{r}} \quad \text { if } r \neq n \\
m_{\mathrm{n}-1} \quad \text { if } r=n .
\end{array}\right.
\end{gathered}
$$

Therefore $e^{*}>\delta\left(G_{\mathrm{n}}\right)$, as required.
It remains to consider the two exceptional cases.

Case (i). The separation of G_{3} as shown in Figure 1(b).
Let the partite set V_{k} be divided into a and b vertices, and let e^{*} denote the number of edges removed in this separation. Then

$$
e^{*}=m_{\mathrm{i}} b+m_{\mathrm{i}} m_{\mathrm{j}}+m_{\mathrm{j}} a
$$

$$
\begin{aligned}
& =m_{\mathrm{i}}\left(b+m_{\mathrm{j}}\right)+m_{\mathrm{j}} a \\
& >m_{\mathrm{i}}+m_{\mathrm{j}}\left(\text { since } b+m_{\mathrm{j}} \geq 2, a \geq 1\right) \\
& \geq \delta\left(G_{2}\right)
\end{aligned}
$$

as required.
Case (ii). The separation of G_{4} as shown in Figure $1(c)$.
Let e^{*} denote the number of edges deleted in this separation. Then

$$
\begin{aligned}
\mathrm{e}^{*} & =m_{\mathrm{i}} m_{\mathrm{j}}+m_{\mathrm{i}} m_{\mathrm{k}}+m_{\mathrm{j}} m_{l}+m_{\mathrm{k}} m_{\mathrm{i}} \\
& =m_{\mathrm{i}}\left(m_{\mathrm{j}}+m_{\mathrm{k}}\right)+m_{\mathrm{j}} m_{l}+m_{\mathrm{k}} m_{\mathrm{i}} \\
& >m_{\mathrm{i}}+m_{\mathrm{j}}+m_{\mathrm{k}} \\
& >\delta^{(}\left(G_{4}\right) .
\end{aligned}
$$

The proof is now complete.
We are now ready to prove the following main result of this section.

ThEOREM 1. Let p be the order of the graph G_{n}, and k be any integer with $1 \leq k \leq p-1$. If G_{n} is separated into components by an efficient k-separation, then
either (i) at least k of the components are trivial, or (ii) k-1 of the components are trivial, and the other two are K_{2}.

Proof. Suppose there are two non-trivial components Q_{1} and Q_{2} of G_{n} after the removal of $\lambda^{(\kappa)}\left(G_{\mathrm{nI}}\right)$ edges in an efficient k-separation of G_{n}. We shall show that the induced subgraph $H=\left\langle Q_{2} \cup Q_{3,}\right\rangle_{C_{11}}$ is $K_{2}(2,2)$.

We first note that H is a complete multipartite subgraph of G_{n}. If $H \neq K_{2}(2,2)$, then by Lemma 1, the number of edges removed to separate H into two components Q_{1} and Q_{2} is greater than $\delta(H)$. But $\delta(H)$ is equal to the number of edges removed to separate H into a trivial component $\{v\}$, and a component H v where $v \in V(H)$ such that $\operatorname{deg}_{I I}(v)=\delta(H)$. Thus G_{n} can be separated into $k+1$ components by removing less than $\lambda^{(k)}\left(G_{11}\right)$ edges. This contradicts the definition of $\lambda^{(\kappa)}\left(G_{\mathrm{n}}\right)$. Therefore $Q_{1}=Q_{2}=K_{2}$ and $H=K_{2}(2,2)$.

Now, suppose that there is another nontrivial component Q_{3} of G_{n} after the removal of $\lambda^{(\kappa)}\left(G_{n}\right)$ edges in an efficient k-separation of G_{n}. Then, by the argument above, we conclude that $H_{1}=\left\langle Q_{2} \cup Q_{3}\right\rangle_{i_{n}}$ and $H_{2}=\left\langle Q_{2} \cup Q_{3}\right\rangle_{C_{i n}}$ are all isomorphic with $K_{2}(2,2)$. Thus, $Q_{3}=K_{2}$ and the number of edges removed to separate $H^{*}=\left\langle Q_{1}\right.$ $\left.\cup Q_{2} \cup Q_{3}\right)$ into three components Q_{1}, Q_{2} and Q is six. However, if we delete all the five edges of H^{*} which are incident with the two vertices
of Q_{3}, we also separate H^{*} into three components. But this contradicts the minimality of $\lambda^{(\mathrm{k})}\left(G_{\mathrm{n}}\right)$. The result thus follows.

Remark. We note that the result (ii) in Theorem 1 can occur only when $G_{n}=K_{2}\left(m_{1}, m_{2}\right)$, where $m_{1}, m_{2} \geq 2$.

3. HIGHER ORDER EDGECONNECTIVITY

In this section we shall apply Theorem 1 to determine the $k^{\text {th }}$ order edge-connectivity of any complete n-partite graph.

We begin with the following result.
LEMMA 2. Let $T \supseteq V\left(G_{\mathrm{n}}\right)$ such that $|T|=t$ ≥ 1 and $e_{C_{n}}(T)+e_{G_{11}}\left(T, \mathrm{G}_{\mathrm{n}}-T\right)=\lambda^{(1)}\left(G_{\mathrm{n}}\right)$. Then (i) there exists $\omega \in T$ such that $\operatorname{deg}_{G_{\mathrm{in}}}(\omega)=\delta\left(G_{\mathrm{n}}\right)$, and
(ii) if $T^{\prime}=T-\{v\}$ and $G^{\prime}=G_{\mathrm{n}}-v$, where $v \in$ T, then $e_{C i}\left(T^{\prime}\right)+e_{6 ;}\left(T^{\prime}, G^{\prime}-T^{\prime}\right)=\lambda^{(t-1)}(G)$.

Note. By the assumption of Lemma 2, we are, indeed, given an efficient t-separation of G_{n} which separates it into $t+1$ components $\{\mathrm{x}\}$ $(\mathrm{x} \in T)$ and $G_{\mathrm{n}}-T$. The subgraph $G_{\mathrm{n}}-T$ must be connected as $\lambda^{(1)}\left(G_{n}\right)<\lambda^{(t+1)}\left(G_{n}\right)$.

Proof. (i) We suppose the contrary. Then no element of T is in V_{n} or in any other partite set V_{i} of G_{n} such that $\left|V_{i}^{n}\right|=\left|V_{n}\right|$ Let $v \in T$ and $T^{*}=T-\{v\}$. Consider the graph $G_{\mathrm{n}}-T^{*}$. Note that $G_{n}-T^{*}$ is a complete multipartite subgraph of G_{n}. So V_{n} is one of its partite sets. Let $u \in$ V_{n} and $u \in V^{*}$ where V^{*} is also a partite set in the partition of $G_{n}-T^{*}$. Since $\left|V_{n}\right|>\left|V^{*}\right|$, we have

$$
e_{\left(i_{1}\right.}\left(u, G_{\mathrm{n}}-T^{*}\right)<e_{\left(_{i_{n}}\right.}\left(u, G_{\mathrm{n}}-T^{*}\right)
$$

Therefore (Figure 2)

$$
\begin{aligned}
& e_{C_{\mathrm{n}}}\left(T^{*} \cup\{u\}\right)+e_{G_{\mathrm{in}}}\left(T^{*} \cup\{u\}, G_{\mathrm{n}}-\left(T^{*} \cup\{u\}\right)\right) \\
& =e_{G_{\mathrm{in}}}\left(T^{*}\right)+e_{G_{\mathrm{in}}}\left(T^{*}, G_{\mathrm{n}}-T^{*}\right)+e_{C_{\mathrm{in}_{1}}}\left(u, G_{\mathrm{n}}-T^{*}\right) \\
& <e_{C_{i_{1}}}\left(T^{*}\right)+e_{C_{\mathrm{n}}}\left(T^{*}, G_{\mathrm{n}}-T^{*}\right)+e_{C_{\mathrm{i}_{1}}}\left(v, G_{\mathrm{n}}-T^{*}\right) \\
& =e_{C_{\mathrm{h}}}\left(T^{*} \cup\{v\}\right)+e_{\mathrm{C}_{1}}\left(T^{*} \cup\{v\}, G_{\mathrm{n}}-\left(T^{*} \cup\{v\}\right)\right) \\
& =e_{G_{\mathrm{in}}}(T)+e_{G_{\mathrm{n}}}\left(T, G_{\mathrm{n}}-T\right) \\
& =\lambda^{(1)}(G) \text {, }
\end{aligned}
$$

which contradicts the minimality of $\lambda^{(1)}\left(G_{11}\right)$. Thus (i) follows.
(ii) Since $\left|T^{\prime}\right|=t-1$, by the minimality of $\lambda^{(t-1)}\left(G^{\prime}\right)$, we have

$$
e_{G^{\prime}}\left(T^{\prime}\right)+e_{6_{j}^{\prime}}\left(T^{\prime}, G^{\prime}-T^{\prime}\right) \geq \lambda^{(t-1)}\left(G^{\prime}\right)
$$

Figure 2.

Figure 3.
If the equality does not hold, then (Figure 3)

$$
\begin{aligned}
\lambda^{(1)}\left(G_{\mathrm{n}}\right) & =e_{C_{\mathrm{h}_{1}}}(T)+e_{G_{\mathrm{i}_{\mathrm{n}}}}\left(T, G_{\mathrm{n}}-T\right) \\
& =e_{G_{G}}\left(T^{\prime}\right)+e_{G ;}\left(T^{\prime}, G^{\prime}-T^{\prime}\right)+\operatorname{deg}_{c_{\mathrm{in}}}(u) \\
& >\lambda^{(1-)^{\prime}}\left(G^{\prime}\right)+\operatorname{deg}_{C_{\mathrm{n}}}(u) \\
& \geq \lambda^{(1)}\left(G_{\mathrm{n}}\right),
\end{aligned}
$$

which is impossible.
Let $H_{\mathrm{k}}=\left\{H_{0}, H_{1}, \ldots, H_{\mathrm{k}}\right\}$ be a family of subgraphs of G_{n} defined as follows: $H_{0}=G_{\mathrm{n}}$ and for $\mathrm{i}=1,2, \ldots, k, H_{\mathrm{i}}=H_{\mathrm{i}-1}-v_{\mathrm{i}}$ for some $v_{\mathrm{i}} \in V\left(H_{\mathrm{i}}\right.$ 1) such that $\operatorname{deg}_{\mathrm{H}_{\mathrm{i}-1}}\left(\mathrm{v}_{\mathrm{i}}\right)=\delta\left(H_{\mathrm{i}-1}\right)$.

We shall now apply Theorem 1 and Lemma 2 to prove the following result.

Lemma 3. Let p be the order of the graph G_{n}, and k be any integer satisfying $1 \leq k \leq p-1$. Then there exists a set of rertices S of G_{n} such that $|S|=k$ and $e_{G_{\mathrm{n}}}(S)+e_{C_{\mathrm{n}}}\left(S, G_{\mathrm{n}}-S\right)=\lambda^{(k)}\left(G_{\mathrm{n}}\right)$.

Furthermore, $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}=V\left(G_{\mathrm{n}}\right)-$ $V\left(H_{\mathrm{k}}\right)$ where H_{k} is a member of some H_{k} of G_{n}.

Proof. To prove the first part, we show that, for each $k=1,2, \ldots, p-1$, there is an efficient k-separation of G_{n} such that, after performing
this separation, at least k of the components are trivial. By Theorem 1, there are at most two non-trivial components Q_{-}and Q_{2} in any efficient k-separation of G_{n}, and $H=\left\langle Q_{1} \cup Q_{2}\right\rangle=K_{2}(2,2)$. But the number of edges removed to separate H into Q_{1} and Q_{2} is equal to the number of edges whose removal separates H into a trivial component and a $K_{2}(1,2)$ component. This completes the proof of the first part.

By Lemma 2(i), there exists $v_{1} \in S$ such that $\operatorname{deg}_{\epsilon_{\mathrm{in}}}\left(v_{1}\right)=\delta\left(G_{\mathrm{n}}\right)$. If $\mathrm{k}>1$, let us write $S_{1}=S-\left\{v_{1}\right\}$ and $H_{1}=G_{\mathrm{n}}-v_{1}$. By Lemma 2(ii), we have

$$
e_{H_{1}}\left(S_{1}\right)+e_{H_{1}}\left(S_{1}, H_{1}-S_{1}\right)=\lambda^{(k-1)}\left(H_{1}\right) .
$$

Note that H_{1} is also a complete multipartite graph, and $\left|S_{1}\right|=k-1$. Thus by Lemma 2(i), there exists $v_{2} \in S_{1}$ such that $\operatorname{deg}_{H_{1}}\left(v_{2}\right)=\delta\left(H_{1}\right)$. If $k>2$, by using the same argument as above, we conclude that for $\mathrm{i}=3,4, \ldots, k, S_{\mathrm{i}}-1$ contains v_{i} such that $\operatorname{deg}_{H_{\mathrm{i}-1}}\left(v_{\mathrm{i}}\right)=\delta\left(H_{\mathrm{i}-1}\right)$ where $H_{\mathrm{i}}=H_{\mathrm{i}}$,$-v_{i}$. The proof is now complete.

We are now in a position to establish the main result of this note.

Theorem 2. Let p be the order of the graph G_{n}. Then for $k=1,2, \ldots, p-1$,

$$
\lambda^{(k)}\left(G_{\mathrm{n}}\right)=\sum_{H_{\mathrm{i}} \in H_{\mathrm{k}-1}} \delta\left(H_{\mathrm{i}}\right)
$$

for some $H_{\mathrm{k}-1}$ of G_{n}.
Proof. By Lemma 3, there exists $S \subseteq V\left(G_{\mathrm{n}}\right)$ such that $|S|=k$ and $\lambda^{(k)}\left(G_{\mathrm{n}}\right)=e_{\epsilon_{\mathrm{i}}}(S)+e_{C_{\mathrm{n}}}(S$, $\left.G_{\mathrm{n}}-S\right)$. Since $S=\left\{v_{1}, v_{2}, \ldots, v_{\imath}\right\}$ is such that for $\mathrm{i}=1,2, \ldots, k, \operatorname{deg}_{H_{\mathrm{i}-1}}\left(v_{\mathrm{i}}\right)=\delta\left(H_{\mathrm{i}-1}\right)$, we have

$$
\begin{gathered}
E_{G_{\mathrm{in}}}(S) \cup E_{G i}\left(S, G_{\mathrm{n}}-S\right) \\
=\bigcup_{i=0}^{k-1} E_{G_{\mathrm{in}}}\left(v_{\mathrm{i}+1}, H_{\mathrm{i}}\right) .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \lambda^{(\lambda)}\left(G_{i)}\right)=e_{i_{n}}(S)+e_{i_{i}}\left(S, G_{n}-S\right) \\
& =\sum_{i=1}^{k-1} e_{i_{n}}\left(v_{i+1}, H_{i}\right)=\sum_{i=0}^{k-1} \delta\left(H_{i}\right),
\end{aligned}
$$

as required.

4. SPANNING TREE FACTORIZATION

It is known that a complete graph K_{p} can be factored into spanning trees (indeed spanning paths) if and only if p is even (see for instance,

Behzad et al. (1979), p. 168). In the following theorem we give a necessary and sufficient condition for the graph G_{n} to be factored into spanning trees.

Theorem 3. The complete n-partite graph $K_{\mathrm{n}}\left(m_{1}, m_{2}, \ldots, m_{\mathrm{n}}\right)$ can be factored into spanning trees if and only if

$$
\sum_{i j=1}^{n} m_{i} m_{j}=k\left(\sum_{i=1}^{n} m_{i}-1\right)
$$

for some positive integer k.
Corollary. The graph $K_{2}(m, n)$ is spanning tree factorizable for the following integers m and n ($n \geq m$):
(i) $m=1$, and $n \geq 1$;
(ii) $m \equiv 1(\bmod 2), m>1$, and $n=m+1$;
(iii) $m>2$, and $n=(m-1)^{2}$;
(iv) $m>4$, and $n=(m-1)(m-2) / 2$;
(v) $m=a b$ and $n=(a b-1)(b-1)$ where a and b are integers >2.
Corollary 2. (i) The graph $K_{\mathrm{n}}(m-1$, $m, m, \ldots, m)$ is spanning tree factorizable if and only if $(n-1) m \equiv 0(\bmod 2)$.
(ii) The graph $K_{\mathrm{n}}(1, m, m, \ldots, m)$ is spanning tree factorizable if and only if $n m \equiv 0(\bmod 2)$.
(iii) The graph $K_{\mathrm{n}}(m, m, \ldots, m)$ is spanning tree factorizable if and only if $m=1$ and n is even.

Denote by $\omega(G)$ the number of components of G. A subset X of $E(G)$ is called an edgecutset of G if $\omega(G-X)>1$. Following Peng et al. (1988), the edge-toughness of G, denoted by $\tau_{1}(G)$, is defined as

$$
\begin{aligned}
\tau_{1}(G)= & \min \left\{\left.\frac{|X|}{\omega(G-X)-1} \right\rvert\, X\right. \text { is an } \\
& \text { edge-cutset of } G\}
\end{aligned}
$$

The above definition of $\tau_{1}(G)$ is, as a matter of fact, motivated by the following result due to Nash-Williams (1961) and Tutte (1961) independently.

Theorem A. A connected graph G has s edgedisjoint spanning trees if and only if $|X| \geq s(\omega$ $(G-X)-1)$ for each $X \subseteq E(G)$.

It follows from Theorem A that a connected graph G has k edge-disjoint spanning trees if and only if $\tau_{1}(G) \geq k$. Thus Theorem 3 is an immediate consequence of the following result.

ThEOREM 4. $\tau_{1}\left(K_{\mathrm{n}}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right)$

$$
=\frac{\sum_{i j=1}^{n} m_{i} m_{j}}{\sum_{i=1}^{n} m_{i}-1}
$$

To prove the above theorem we shall make use of the following result which was obtained in Peng et al. (1988) as a corollary of a more general theorem.

For each $\mathrm{i}=1,2, \ldots,|V(G)|-1$, we write

$$
\Delta \lambda_{\mathrm{i}}(G)=\lambda^{(i-1)}(G)-\lambda^{(\mathrm{i})}(G) .
$$

Theorem B. Let G be a connected graph of order p and size q. If the sequence $\left(\Delta_{i}(G) P 1 \leq i \leq p-1\right)$ is non-increasing, i.e. $\Delta_{\mathrm{i}}(G) \geq \Delta_{i+1}(G)$ for each $\mathrm{i}=$ $1,2, \ldots, \mathrm{p}-2$, then $\tau_{1}(G)=q /(p-1)$.

Proof of Theorem 4. By Theorem B, we only need to show that the sequence $\left(\Delta_{i}\left(G_{n}\right) \mid 1 \leq\right.$ $i \leq p-1)$ is non-increasing. By Theorem 2, $\Delta_{\mathrm{i}}\left(G_{\mathrm{n}}\right)=\lambda^{(\mathrm{i})}\left(G_{\mathrm{n}}\right)-\lambda^{(i-1)}\left(G_{\mathrm{n}}\right)=\delta\left(H_{\mathrm{i}-1}\right)$. Note that for $\mathrm{i}=1,2, \ldots, p-1, H_{\mathrm{i}}=H_{\mathrm{i}-1}-v_{\mathrm{i}}$ where $\operatorname{deg}_{\text {Hi-1 }}\left(v_{\mathrm{i}}\right)$ $=\mathrm{d}\left(H_{\mathrm{i}-1}\right)$ and v_{i} is adjacent to every vertex of H_{i}. ${ }_{1}$, except those in the partite set (of the partition of H_{i-1}) that v_{i} belongs to. So, it is clear that for $\mathrm{i}=1,2, \ldots, p-1, \delta\left(H_{\mathrm{i}}\right) \leq \delta\left(H_{\mathrm{i}-1}\right)$. Therefore, the sequence $\left(\Delta_{i}\left(G_{\mathrm{n}}\right) \mid 1 \leq i \leq p-1\right)=\left(\delta\left(H_{\mathrm{i}}\right) \mid 0\right.$ $\leq i \leq p-2$) is non-increasing.

REFERENCES

Behzad M., G. Chartrand, and L. Lesniak-Foster. 1979. Graphs and Digraphs. Belmont: Wadsworth.

Boesch F.T. and S. Chen. 1978. A Generalization of Line Connectivity and Optimally Invulnerable Graphs. SIAM J. Appl. Math. 34: 657-665.
Goldsmith D.L. 1980. On the Second Order Edge-Connectivity of a Graph. In Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton. Congressus Numerantium 29: 479-484.
Connectivity of a Graph. In Proceedings of the Edgelfth Southeastern Conference on Combinatorics, Graph Theory and Computing. Vol. 1 Boca Raton, Congressus Numerantium 32: 375-382.
Goldsmith D.L., B.Manvel and V.Faber. 1980. Separation of Graphs into Three Components by the Removal of Edges. J. Graph Theory 4: 213-218.
Nash-Williams C.ST.J.A. 1961. Edge-Disjoint Spanning Trees of Finite Graphs. J. London Maths. Soc. 36: 445-450.

Peng Y.H., C.C. Chen and K.M. Koh. 1988. On Edge-Toughness of a Graph I. SouthEast Asian Mathematical Bulletin 12(2):109-122.
Sampathkumar E. 1984. Connectivity of a Graph - A Generalization. J. Comb. Inf. and Sys. Sc. 9(2): 71-78.

Tutte W.T. 1961. On the Problem of Decomposing a Graph into n Connected Factors. J. London Maths. Soc. 36: 221-230.
(Received 12 July, 1988)

[^0]: * On leave from the University of Agriculture, Malaysia.

