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ABSTRAK
Biarkan G sebagai suatu graf terhubung yang mempunyai p 2 2 titik. Untuk k = 1, 2, ..., p - 1, kehubungan-
garis peringkat k yang diberi lambang M (G), ditakrifkan sebagai bilangan terkecil garis-garis yang apabila
dikeluarkan daripada G akan meninggalkan suatu graf yang terdiri daripada k + 1 komponen. Dalam artikel
ini kita akan menentukan kuantiti N (G,) bagi sebarang graf multipartit lengkap G,. Sebagai akibatnya
kita perolehi syarat perlu dan cukup supaya graf G, dapat difaktorkan menjadi pohon-pohon janaan.

: ABSTRACT
Let G be a connected graph with p 2 2 vertices. For k = 1, 2,..., p - 1, the k" order edge-connectivity of G,
denoted by M¥ (G), is defined to be the smallest number of edges whose removal from G leaves a graph with
k + 1 connected components. In this note we determine A ( G,) for any complete multipartite graph G,. As
a consequence, we give a necessary and sufficient condition for the graph G to be factored into spanning trees.

1. INTRODUCTION

Let G be a connected simple graph of order p
and size ¢. Denote by V(G) and E(G) the vertex
set and edge set of G respectively. The edge-
connectivity A = A(G) of G is defined to be the
smallest number of edges whose removal from
G results in a disconnected or trivial graph.
This notion has a natural generalization. Fol-
lowing Goldsmith et al. (1980), for each k =0,
1, ..., p- 1, the kth order edge-connectivity of G,
denoted by A® (G), is defined as the minimum
number of edges of G whose removal increases
the number of components of G by k. Note that
AO(G) =0, AV (G) = M(G) and -V (G) = q. The
properties of A% (G) were studied previously in
Boesch and Chen (1978), Goldsmith (1980 and
1981), Goldsmith et al. (1980) and Sampath-
kumar (1984).
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[t is easy to see that for any tree 7, L™ (1)
= k. Furthermore, since any connected graph G
contains a spanning tree, A®¥(G) > k. It was
proved in Peng et al. (1988) that A% (K ) =; k(2,
-k-1) foreach k=0, 1, ..., p - 1. In this note
we shall determine the kth order edge-connec-
tivity of a complete n-partite graph and then
use the result to derive a necessary and suffi-
cient condition for a complete n-partite graph
to be factored into spanning trees.

Throughout this article, we write G, =
K (m,, m,, ..., m ), n =2, to denote a complete

n 22 -
n-partite graph with n partite sets V,, V,, ..., ¥
such that |I{| =m 21 foreachi=1,2, .., n
For the sake of convenience, we always assume

m S my, < ... < m,
A graph Gis called a complete multipartite graph
if G = G, for some integer n > 2.
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For those graph-theoretic terms used but
not defined here we refer to Behzad et al. (1979).

2. EFFICIENT SEPARATION
Let G be a connected graph of order p, and k
be an integer such that 1 < k < p-1. Following
Goldsmith et al. (1980) again, by an efficient k-
separation of G, we mean a removal of AR (G)
edges from G so that G is separated into k + 1
components. Call a component of a graph #riv-
ial if it is a singleton, and non-trivial otherwise.

It was pointed out in Peng et al. (1988)
that every efficient k-separation of K (1 < k< p-
1) always results in at least k trivial components.
In this section we shall study the possible situa-
tions after performing an efficient separation
on G.

Let A and B be two subsets of V(G). We
denote by E_ (A,B) the set of edges of G each
joining a vertex of A to a vertex of B, and by
e.(A,B) the number of edges in E (A,B). In
particular, we write ¢ (A) for e (A,A), and ¢ (v,B)
for e ({v},B) where v € V(G). The minimum
degree of G is denoted by 8(G), i.e. 8(G) =
min{deg,(v) | v e V(G).

First of all, we have

LEMMA 1. The number of edges of the graph
G, needed to be removed to separate G, inlo two non-
trivial components is greater than S( G,), except when
G, = K,(2,2), in which case, the number is equal to
3(G,).

Proof. We proceed by induction on n. For
the case n=2, let G,, G, # K,(2,2), be separated
into two non-trivial components, and let ¢*
denote the number of edges removed in this
separation. We may assume that both partite
sets V, and V, of G, are divided into two sets.
Let V, be divided into « and b vertices, and V,
be divided into ¢ and d vertices. (Figure 1(a))
Then a,b,cand d are positive. Since G, # K,(2,2),
not all of them are equal to 1. Thus ¢* = ad +
be>a+ b If ad+ bc=a+ b, then ¢=d =1 since
a, b, ¢, d are positive integers. This implies m,
=c+d=2. Since m, 2m, 22, m = 2. But this
contradicts our assumption that G, # K,(2,2).
Thus, we have ¢ > a + b= 8(G,).

Now, suppose that the statement holds
for any graph G _,(n 2 3). We shall show that
the statement is also true for any G,. Assume
that G # K,(2,2), and let G, be separated into

two non-trivial components Q, and Q,. Except
for the two cases of separation shown in Figures
1(b) and (¢) for n = 3 and n = 4 respectively, it
can be checked that there is always a partite set
V_ of G such that (Q U Q,) - V. still consists of
two non-trivial components (1= Q- Viand Q.=
Q, - Viwhere V is separated into two sets V;and
Viin that separation. (Figure 1(d)) Note thatV;or
Vi may be empty.

V) alb L4
y (o] y Ly T
t J r r
Q, Qs
(a) (b) (¢) (d)
Figure 1.

So, the complete (n-1)-partite graph G’ =
G, - V is separated into two non-trivial
components Qjand Q,. Let ¢ denote the num-
ber of edges removed in this separation of G,
and ¢* denote the number of edges deleted to
separate G into Q, and Q,. Then

o= ¢ + e (Vi, QD) + e, (Vi, V(Q)).

By induction hypothesis,

é > 86,
But
5(G) :{ 3G)-m if. r#E n
3(G)-m  ifr=mn,
and

e (Vi, (@) + ¢, (Vi, V(Q)) >
{ m ifr#n

m . if r=n
n-1

Therefore ¢* > 8(G,), as required.

It remains to consider the two exceptional
cases. .

Case (i). The separation of G, as shown in
Figure 1(b).
Let the partite set V, be divided into @ and b
vertices, and let ¢¥ denote the number of edges
removed in this separation. Then

e = mb + mm + ma
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m(b+ m) + ma

> m + m (since b + ijQ, az1)
= 3(G,), '

Il

as required.

Case (ii). The separation of G, as shown in
Figure 1(c).
Let ¢* denote the number of edges deleted in
this separation. Then

(i mom, -+ + mm, + omom,
(m +m) + mm + omom
> om o+ om o+ omy

>

5 (G

The proof is now complete. [

We are now ready to prove the following
main result of this section.

THEOREM 1. Let p be the order of the graph
G, and k be any integer with 1 < k < pLIfG s
separated into components by an efficient k-separa-
tion, then

either (i) at least k of the components are trivial,
or (ii) k-1 of the components are trivial, and
the other two are K,.

Proof. Suppose there are two non-trivial
components Q, and Q, of G after the removal
of A¥(G) edges in an efficient k-separation of
G,. We shall show that the induced subgraph

—(Qu Q. is K (2,2).

We first note that H is a complete multi-
partite subgraph of G . It H# K,(2,2), then by
Lemma 1, the number of edges removed to
separate / into two components Q, and Q, is
greater than d(H). But O(H) is equal to the
number of edges removed to separate H into
a trivial component {v}, and a component f7 -
v where v € V(H) such that deg, (v) = 6(H).
Thus G, can be separated into k+1 components
by removing less than A% (G)) edges. This
contradicts the definition of A" (G, ). Therefore

=Q, =K and H = K,(2,2).

Now, suppose that there is another non-
trivial component Q, of G _after the removal of
A¥(G,) edges in an efficient k-separation of G, .
Thcn by the argument above, we conclude that

={Q, v Q) and H, =(Q, U Q,),,, are all
1som0rph1c with K,(2,2). Thus, Q,=K and the
number of edges removed to separate H* =(Q,
U Q, v Q,) into three components Q,, Q, and
Q, is six. However, if we delete all the five edges
of H* which are incident with the two vertices

of Q,, we also separate H* into three compo-
nents. But this contradicts the minimality of
A™(G,)). The result thus follows.” [

Remark. We note that the result (ii) in
Theorem 1 can occur only when G, = K,(m,,m,),
where m,, m, 2 2.

3. HIGHER ORDER EDGE-
CONNECTIVITY
In this section we shall apply Theorem 1 to
determine the K" order edge-connectivity of
any complete n-partite graph.

We begin with the following result.

LEMMA 2. Let T 2 V(G,) such that Tl = ¢
>1and e, (D) + e (TG, - 1)—7\“ (G ). Then
(1) there ('xzsz,’s we I such th{zl deg,. (w) =0( G),
and
(i) ¢f T"= T-{v} and G' = G, -V, where v €
T, then &.(T) + ¢ (TG - T") = A¥P(G).

Note. By the assumption of Lemma 2, we
are, indeed, given an efficient tseparation of G,
which separates it into ¢ + 1 components {x|
(x € T) and G, - T. The subgraph G - T must
be connected as V(G ) < A"V (G).

Proof. (i) We suppose the contrary. Then
no element of T'is in V or in any other partite
set Vof G such that [ V] = | V| Letve Tand
i -{v } Consider the gldph G = T* Note
that (;“ - T*is a complete multipar tite subgraph
of G.So V is one of its partite sets. Let u €
V. and ue V where V*is also a partite set in
the partition of G - 1% Since ‘V| > [V we
have

e(h(u. G - 1) < g (1 G, = 1)

Therefore (Figure 2)

2 ([ U {u}) + P{H(T* Ui, G- (T* 0 {u}))

= ¢, (T%) + ¢, (T% G - T% + ¢, (u, G =17
e, (T% + e, (T% G, - T + e, (v, G - T%

= e(&l(T*u {vh) + e%(T*u (v, G - (T*uU{v}))

= ¢, (T) + e, (1, G - T)

= (),

N

which contradicts the minimality of A" (G ).

Thus (1) follows.
(11) Since | T

of A"V (G'), we have

e, (T') + (T, G'- T) 2 Al

= {- 1, by the minimality

UG,

G
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Figure 3.

If the equality does not hold, then (Figure 3)

AU(G) = e, () + e, (TG, - 1)
=¢.(T") + e (T, G'- T + deg(." (u)
> A DG + deg,. ()
> A0(G,),

which is impossible. [
Let H = {H, H,, ..., H} be a family of
subgraphs of G, deﬁned as follows: H = G and
fori=12,.,k H=H_, -v for somev, e V(H_
) such that degHH(Ul) = 0(H).
We shall now apply Theorem 1 and
Lemma 2 to prove the following result.
LEMMA 3. Let p be the order of the graph G
and k be any integer satisfying 1 <k < pr-1. Then l/zprp
exists a set of vertices S of G such that |S|=k and
e. (S) + e(,n(S G, -9 = 7»‘“((,”)
) Furthermore, S = {v, V,, ..., v} = V(G) -
V(H,) where H, is a member of some H_of G .
Proof. To prove the first part, we show
that, for each k=1,2,..., p- 1, there is an efficient
k-separation of G, such that, after performing

this separation, at least k of the components are
trivial. By Theorem 1, there are at most two
non-trivial components Q and @, in any efficient
kseparation of G, and H=(Q, U Q,) = K,(2,2).
But the number of edges removed to separate
Hinto Q, and @, is equal to the number of
edges whose removal separates H into a trivial
component and a K,(1,2) component. This
completes the proof of the first part.

By Lemma 2(i), there exists v, € §such
that deg, (U) =8(G). If k > 1, let us write

S, =S- {U }and H, = G, -v,. By Lemma 2(ii),
we have
&, (8) + 2, (S, H - §) :7&“‘"’~(H).

Note that H, is also a complete multipartite
graph, and | S | = k- 1. Thus by Lemma 2(i),
there exists v, € S, such that deg” (v,) =8(H,).
If k> 2, by using the same ‘ngument as above,
we conclude that fori=3, 4, .
L, such that deg” 1(Ui) = 8([{”) where H = H
- v.. The proof is now complete. 01

We are now in a position to establish the

main result of this note.

THEOREM 2. Let p be the order of the graph

= ks Si 1 contains

( Then for k = 1,2,....p - 1,
A¥(G,) = 2 O(H)
H e H,

K-l
for some H, | of G .

Proof. Bv Lemma 3, there exists § & V(G,)
such that | S| = kand A% (G,) = e, (9 +e, (:,
G, -9). Since S= {05 Vs 20, D) 18 such that 'for
i = 1,2...k degh,i] (U.) = S(HI. ), we have

E. (S) UE, (S G -9
Uk H).

S ‘(.“( vi 12 i

Thus,

()

A (G)=e (8 +e, (5G,-S)

=Y (v.H) = 33 (1),

as required. [

4. SPANNING TREE FACTORIZATION
It is known that a complete graph K/’ can be
factored into spanning trees (indeed spanning
paths) if and only if pis even (see for instance,
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Behzad et al. (1979), p. 168). In the following
theorem we give a necessary and sufficient condi-
tion for the graph G, to be factored into span-
ning trees.

THEOREM 3. The complete n-partite graph
Kn(ml, My, ..., M) can be factored into spanning
trees if and only if

me:{Zm—q

iy=1

for some positive integer k.

COROLLARY. The graph K,(m,n) is spanning
tree factorizable for the following integers m and n
(n 2 m):

i) m=1, and n 2 1;
(ii) 1 (mod 2), m> 1, and n =
(i) m>2, and n= (m- 1)%
(iv) m>4, and n=(m-1)(m-2)/2;
(v) m=aband n= (ab-1)(b-1) where a and
b are integers > 2.

m+ 1;

COROLLARY 2. (1) The graph K (m - 1,
m,m,...,m) is spanning tree factorizable if and only
if (n-1) m=0 (mod 2).

(ii) The graph K (1,m,m,...,m) is spanning
tree factorizable if and only if nm =0 (mod 2).

(iii) The graph K (m,m,...,m) is spanning tree
Sfactorizable if and only if m=1 and n is even.

Denote by o(G) the number of compo-
nents of G. A subset X of E(G) is called an edge-
cutset of Gif w(G-X) > 1. Following Peng et al.
(1988), the edge-toughness of G, denoted by 1,(G),
is defined as

— x|
T,(G) = min

w(G-X)-1
edge-cutset of G}

|Xisan

The above definition of 1,(G) is, as a matter of
fact, motivated by the following result due to
Nash-Williams (1961) and Tutte (1961) inde-
pendently.

THEOREM A. A connected graph G has s edge-
disjoint spanning trees if and only if X > s(0
(G-X)-1) for each X < E(G).

It follows from Theorem A that a con-
nected graph G has k edge-disjoint spanning
trees if and only if T, (G) =2 k. Thus Theorem 3
is an immediate consequence of the following
result.

THEOREM 4. T,(K (m, Mys woey M)

n

Emm
i

i=1

n

Z m,—1
i=1
To prove the above theorem we shall make
use of the following result which was obtained
in Peng et al. (1988) as a corollary of a more
general theorem.

For each i = 1,2,..., IV(G)I - 1, we write

AL (G) = AMF(G) - A(G).

THEOREM B. Let G be a Connerted aph of order

P and size q. If the sequence (A f71 <i< [)»1

is non-increasing, i.e. A(G) 2 AM(G) for each i =
~ap - 2, then T (G) = ¢/ (p1).

Proof of Theorpm 4. By Theorem B, we only
need to show that the sequence (A (G, ) l L=<
1< p=1) is non-increasing By Theorem 2,

A(G,) = A9(G) - A"N(G,) = 8(H, ). Note that
f0r1 = 12 /)—l H=H, -v where deng(D)
=d(H,) and v, is deaCEIll to every vertex of K
\» except those in the partite set (of the parti-
tion of H ) that v, belongs to. So, it is clear that
fori=1,2,..,p-1, 8(H) <3(H,,). Therefore, the
sequence (A (G,)) | 1<i< p-1)=(8(H) | 0
< i< p-2) is non-increasing. [
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