COMMUNICATION IV

A Simple Technique to Ascertain the Phase Relationships between the Various Atomic Orbitals in Each Pi-Molecular Orbital for the Linear Polyenes

Abstract

ABSTRAK Kaedah ringkas bagi pembentukan perhubungan fasa orbital atom $2 p$ yang bersaling tindak ($2 P-A O$) dalam tiap-tiap orbital molekul terhadap eletron pi (Pi-MO) dalam poliena, $C_{n} H_{n+2}$ dengan julat n dan 2 ke 25 dicadangkan.

Abstract

A simple technique is suggested for the construction of phase relationships of interacting $2 p$-atomic orbitals $(2 P-A O)$ in each molecular orbital for pi-electrons (Pi-MO) in the linear polyenes, $C_{n} H_{n+2}$ with n ranging from 2 to 25 .

INTRODUCTION

The organic chemists realized the power and importance of the usse of Frontier Orbital Approach (Fukui, 1971) and conservation of Orbital Symmetry in discussing the mechanisms of concerted pericyclic reactions only after a series of papers published mainly by Woodword and Hoffmann in 1965 (Woodword et al. 1965; Hoffmann et at. 1965; LonguetHiggins et al. 1965). The use of Frontier Orbital Approach requires the knowledge of the phase relationships of all interacting atomic orbitals in HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) or reactants. Similarly, in the construction of orbital correlation diagrams*, one requires the knowledge of the phase relationships of all interacting atomic orbitals in all molecular orbitals of the reacting systems, (Woodword et al. 1970; Vollmer et al. 1970). It is therefore quite essential for both students and teachers involved in the study of the mechanistic aspects of the concerted pericylic reactions to construct the phase relationships of all interacting
atomic orbitals in each molecular orbital of the reacting systems.

In this paper, we describe a modified simple technique to ascertain the phase relationships of all 2p-atomic orbitals (2P-AO) in each moleccular orbital for pi-electrons (Pi MO) of linear polyenes.

CALCULATION AND DISCUSSION

Let us consider a linear polyene of general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$. The coefficient $\left(\mathrm{c}_{\mathrm{rj}}\right)$ corresponding to the contribution of the 2 p orbital of atom j to the rth $\mathrm{MO}\left(\psi_{\mathrm{r}}\right)$ is given by (Coulson et al. 1947)

$$
\begin{equation*}
\mathrm{c}_{\mathrm{rj}}=\left(\frac{2}{\mathrm{n}+1}\right)^{\frac{1}{2}} \sin \left(\frac{\mathrm{rj} \pi}{\mathrm{n}+1}\right) \tag{1}
\end{equation*}
$$

where n is the total number of carbon atom in the polyene. The magnitude of $c_{r j}$ shows the amount of contribution made by jth 2P-AO to the rth MO $\left(\psi_{r}\right)$. The sign (+ or -) of $c_{r j}$ indicates the phase relationship of interacting j th $2 \mathrm{P}-\mathrm{AO}$ in ψ_{r}. The positive, $(+)$, sign of c_{rj} is considered to merely indicate that the

[^0]TABLE 1
The coefficients for pi-molecular orbitals (Pi-MO's) of 1, 3, 5, 7- octatetraene

| Pi-MO | \leftarrow | | | | c_{j} | | | |
| :--- | ---: | ---: | ---: | :---: | ---: | :---: | ---: | ---: | ---: |
| ψ_{r} | c_{1} | c_{2} | c_{3} | c_{4} | c_{5} | c_{6} | c_{7} | c_{8} |
| ψ_{1} | 0.161 | 0.303 | 0.408 | 0.464 | 0.464 | 0.408 | 0.303 | 0.161 |
| ψ_{2} | 0.303 | 0.464 | 0.048 | 0.161 | -0.162 | -0.409 | -0.464 | -0.302 |
| ψ_{3} | 0.408 | 0.408 | 0.0 | -0.409 | -0.408 | 0.0 | 0.409 | 0.408 |
| ψ_{4} | 0.464 | 0.161 | -0.409 | -0.302 | 0.304 | 0.407 | -0.163 | -0.464 |
| ψ_{5} | 0.464 | -0.162 | -0.408 | 0.304 | 0.302 | -0.409 | -0.159 | 0.464 |
| ψ_{6} | 0.408 | -0.408 | 0.0 | 0.408 | -0.409 | 0.0 | 0.407 | -0.409 |
| ψ_{7} | 0.303 | -0.464 | 0.409 | -0.163 | -0.159 | 0.407 | -0.465 | 0.306 |
| ψ_{8} | 0.161 | -0.302 | 0.407 | -0.464 | 0.465 | -0.410 | 0.306 | -0.165 |

positive lobe of jth 2 P-OA is above the nodal plane while the negative, $(-)$, sign of c_{rj} shows that the negative lobe of jth $2 \mathrm{P}-\mathrm{AO}$ is above the nodal plane. In order to explain it in a little more detail, we carried out the numerical operation for 1,3,5,7-octatetraene and the results are summarized in Table 1. The pictorial representation of $\mathrm{Pi}-\mathrm{MO}$, s are shown in Fig. 1.

In the use of the conservation of orbital symmetry for the mechanistic diagnosis of concerted pericyclic reactions, the signs of $\mathrm{c}_{\mathrm{rj} \text { 's }}$ rather than their magnitudes are very often required (Bellamy 1974). The Coulson and Longuet-Higgins equation (equation 1) can be used to calculate the values of c_{rj} and hence to ascertain the phase relatinships between the various AO's in each Pi-MO's for the linear polyenes, but this technique may require a computer or a calculator for relatively larger values of n (equation 1). We wish to demonstrate in this paper a rather simple technique to ascertain the signs of all c_{rj} for a polyene, $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$, with a significantly large value of n without the aid of a computer or a calculator.

It is evident from equation 1 that
$c_{\mathrm{rj}}=0$ if $\frac{\mathrm{rj}}{\mathrm{n}+1}=\mathrm{q}$ with $\mathrm{q}=0,1,2,3 \ldots \ldots$. any integer
$\mathrm{c}_{\mathrm{rj}}=+$ if $\frac{\mathrm{rj}}{\mathrm{n}+1}>\mathrm{q}$ and $<\mathrm{x}$ with $\mathrm{q}=0,2,4$
\ldots. . any even integer and $x=1,3,5$.
. any odd integer.
$\mathrm{c}_{\mathrm{rj}}=-$ if $\frac{\mathrm{rj}}{\mathrm{n}+\mathrm{l}}<\mathrm{q}$ and $>\mathrm{x}$
Using these considerations, we have determined the signs of all coefficients for each PiMO of polyenens, $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$, with n values ranging from 2 to 25 and the results for a few typical polyenes are summarized in Table 2. It is apparent from Table 2 that
(i) When n is an even integer, then each row and column with odd numbering (i.e. $r=$ $\mathrm{j}=1,3,5,7, \ldots$) are symmetric and with even numbering (i.e. $r=j=2,4,6$, $8, \ldots$) are antisymmertric with respect to mirror planes passing through in between $\frac{\mathrm{n}}{2}$ th and $\left(\frac{\mathrm{n}}{2}+1\right)$ th carbon atoms and $\mathrm{Pi}-\mathrm{MO}$,s respectively.
(ii) When n is an odd integer, then each row and column with odd numbering (i.e. $\mathrm{r}=$ $\mathrm{j}=1,3,5,7, \ldots$) are symmetric and with even numbering (i.e. $r=j=2,4,6,8$. . .) are antisymmetric with respect to mirror planes passing through $\left(\frac{\mathrm{n}+1}{2}\right)$ th carbon atom and $\mathrm{Pi}-\mathrm{MO}$, respectively.

These characteristics may be summarized as below:

$$
\begin{array}{r}
\mathrm{c}_{\mathrm{rs}}=(+) \mathrm{c}_{\mathrm{r}, \mathrm{n}-\mathrm{s}+1} \\
\begin{array}{l}
\text { for each value of } \mathrm{s}, \mathrm{r}=1,3,5, \\
\\
\\
\text { odd, } \mathrm{s}=1,2,3, \ldots\left(\frac{\mathrm{n}-1}{2}\right)(5)
\end{array}, ~\left(\begin{array}{l}
\text { odd integer, and for } \mathrm{n}
\end{array}\right.
\end{array}
$$

TABLE 2
Phase relationships between the various atomic orbitals in pi-molecular orbital ($\mathrm{Pi}-\mathrm{MO}$) for the linear polyenes

$c_{r s}=(-) c_{r, n-s+1}$ for each value of $s, r=2,4,6$, . . . n even integer and for n even, $\mathrm{s}=1,2,3, \ldots \frac{\mathrm{n}}{2}$
$c_{\mathrm{sj}}=(+) \mathrm{c}_{\mathrm{n}-\mathrm{s}+1 \mathrm{j}}$ for each value of $\mathrm{s}, \mathrm{j}=1,3,5,$. . . n odd integer and for n odd,

$$
\begin{equation*}
\mathrm{s}=1,2,3, \ldots \frac{\mathrm{n}-1}{2} \tag{7}
\end{equation*}
$$

$c_{s j}=(-) c_{n-s+s l j}$ for each value of $s, j=2,4,6$, . . . n even integer and for n

$$
\begin{equation*}
\text { even, } s \text {, }=1,2,3, \ldots \frac{n}{2} \tag{8}
\end{equation*}
$$

In equation $5-8,(+)$ and $(-)$ merely indicate the symmetric and antisymmetric characteristics, respectively. It is apparent that for n odd, the $\left(\frac{n+1}{2}\right)$ th row and column contain elements with repeat of a set of elaments, + , $0,-, 0$.

The symmetric and antisymmetric characteristics shown by equations $5-8$, reveal that one quarter of the total elemants of the matrix of the coefficients $c_{r j}$, (Table 2) for each polyene are required to generate using equations 2-4. The rest three quarter of the total elements may be easily generated using equations $5-8$.

CONCLUSION

The simple technique described in this paper may be used to describe the phase relationships of all interacting atomic orbitals in each of the bonding and anti-bonding molecular orbital of pi-eleetrons in the linear polyene systems without calculating the absolute sign and magnitude of the coefficient of interaction of various atomic orbitals (in each molecular orbital) using equation 1.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. M.O.Agho (Chemistry Depertment, Bayero University) and Dr. Nordin Lajis (Chemistry Department, Universiti Pertanian) for helpful discussion and suggestions. The financial assistance from the Research and Higher Degree Committee of Bayero University is duly acknowledged.

Fig. 1: Graphical representation of Pi-molecular orbilals of 1, 3, 5, 7-octatetraene as combinations of $2 P$ AO's. The lengths of the orbitals are proportional to the coefficients, $c_{r j}$, of Pi-MO's.

MOHAMAD NIYAZ KHAN
Department of Chemistry,
Bayero University, P.M.B. 3011, Kano Nigeria.

REFERENCES

Bellamy, A.J. 1874. An Introduction to Conservation of Orbital Symmetry. Longman Text.

Coulson, C.A. and H.C. Longuet-Higgins. 1947. Electronic Structure of Conjugated Systems (I) Theory. Proc. Roy. Soc., A192: 16
Fukui, K. 1971. Recognition of Stereochemical Paths by Orbital Interaction, Acc. Chem. Res. 4: 57
Hoffmann, R. and R.B. Woodword. 1965. Selection Rules for Concerted Cycloaddition Reactions. J. Amer. Chem. Soc. 87: 2946.

Hoffmann, R. and R.B. Woodword. 1965. Orbital Symmetries and Endo-exo Relationships in Concerted Cycloaddition Reactions. J. Amer. Chem. Soc. 8: 4388
Hoffmann, R., and R.B. Woodword. 1965. Orbital Symmetries and Orientational Effects in a Sigmatropic Reaction. J. Amer. Chem. Soc. 87: 4389.

Longuet-Higgins, H.C and I.W. Abrahamson. 1965.

The Electronic Mechanism of Electrocyclic Reactions. J. Amer. Chem. Soc. 87: 2945
Vollmer, J.J. and K.L. Servis. 1970. WoodwordHoffmann Rules: Cycloaddition Reactions. J. Chem. Edu. 47: 491.

WOODWORD, R.B. and R. Hoffmann. 1965. Stereochemistry of Electrocyclic Reactions. J. Amer. Chem. Soc. 87: 395

Woodword, R.B. and R. Hoffmann. 1965. Selection Rules for Sigmatropic Reactions. J. Amer. Chem. Soc. 87: 2511.

Woodword, R.B. and R. Woofmann. 1970. The Conservation of Orbital Symmetry, Weinheim: Verlag Chemic.
(Received 29 December, 1988)

[^0]: *Orbital correlation diagrams are usually required to establish whether the orbital symmetry was conserved during the course of the chemical transformation.

