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ABSTRAK
Kertas ini membincangkan beberapa calon penganggar kukuh bagi menganggar hubungan fungsian linear
ringkas (SU'R). Penganggar kebolehjadian maksimum klasik bagi SLFR boleh terjejas dengan kehadiran data
terfJencil. Ini ialah kerana ian)'a merupakan penganggar yang berasaskan min. Beberapa penganggar yang
berasaskan median bagi SLFR diselidiki. Dari calon-calon yang dijJertimbangkan itu penganggar jenis Theil
dan penganggar norma-LI terubahsuai didafJati paling kukuh (iaitu, tak peka kepada data terpencil).

ABSTRACT
This paper discusses a number of candidates for robust estimatoTS of a simple linear functional relationship
(Sl1~). The classical maximum likelihood estimatoTS of the SU'R can be affected by the presence oj possible
outliers. This is due to the fact that they are mean-based estimatoTS. Some median-based estimator:) of the SLFR
are examined. Among those considered Theil-type estimators and the modified LI-noT/n estimator are found
to be most robust (i.e insensitive to the outliers).

(1.1)

there exists a consistent ML estimate of the
SLFR parameters. The main results concerning
functional relationship were discussed by Lin­
dley (1947), Madansky (1959), Sprent (1969),
Solari {1969), Moran (1971), Kendall and Stuart
(1973), and Anderson (1980).

With the assumptions on the error terms
in (1.1), the log-likelihood function may be
written as

1. INTRODUCTION: MODEL,
ASSUMPTIONS AND MAXIMUM

LIKELIHOOD (ML) ESTIMATORS
The model considered in this paper is a simple
linear functional relationship (SLFR). It speci­
fies that two mathematical variable ~ and T) are
linearly related but observed with mutually
independent, normally distributed errors <5 and
E, respectively. That is we observe

x, =~, + 8" 8,-N(O,cr")

y,=TJ,+e" E,-N(O,r)

where
T) = ex + [3~, i = I, ..., n, ,

There are (n + 4) parameters to be esti­
mated, i.e, ex, ~, cr2

, 1 2
, and ~l''''''~n (or

equivalently 111' ... ,11). The presence of the'
incidental pammeters ~i' i = 1, ... , n leads to incon­
sistencies of the classical ML estimates unless
an additional assumption is made about the
variance ratio A = T2/cr2• That is, if A is known

L = constant n logcr2
- 1/2cr2

{t(X, - ;,) " + A- I t( y , - ex - [3;,) "I,

Let

1= I

"
S,,=LlY,-y)"

;= I

(1.2)
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where

S,,=L(xi-x)(Yi-Y)
I = I

(1.2)
In the SLFR an outlier may be generated

from one of three types of contaminations, i.e,

(a) a contamination in the x's where the con­
taminated error term ~,is drawn from

M.. 0, h
2

8
), h

2

8
> (51 and

8"" i = 1, ... , n- N( 0, (52)

p:: J

Then the maximum likelihood estimates of [3,
a, and .~; are

and the maximized log -likelihood function is
~".
~r,

3. ESTIMATORS BY GROUPING
METHODS

In the history of SLFR, grouping methods have
been developed as an alternative to the classical
maximum likelihood estimation procedure. The
main advantage of the grouping methods over

or

(b) a contamination in the y's where

c,-N(0,h:),h
2

,> r 1 and

c,ot i= 1, ... ,n-N(0,r1
)

(c) simultaneous contaminations in both the
x's and y's.

The presence of the outlying observation
can cause the fitted line to be dictated by the
wild observation resulting in failure to pass
through the bulk of the data (x;,y) i = 1, ... ,n.
The nonrobustness (i.e, sensitiveness to the bad
observation) is due to the fact that & and p
given in (1.4) (i)-(ii) are based on the means of
the observed values. Hampel(1974) pointed out
that the mean (as an estimate of a location
parameter) is nonrobust because its influence
function is unbounded. Using a si1Jlilar (i.e
influence function) approach Kelly (1984)
demonstrates that the influence functions of
& and Pare unbounded and, therefore, these
ML estimates are nom'obust. In contrast, it is
well known that in the location problem the
median is more robust than the mean because
its influence function is bounded. Therefore,
median-based estimators of the SLFR may
provide good alternatives to the ML estimators.

In the next sections, we presen t several
candidates for the estimators of the SLFR which
are based on the median of the observations.
A simulation study is performed to examine the
performance of these candidates and their
improvement over the mean-based estimators.

or

(1.4) (i)

(1.4) (ii)

(1.4) (iii)

2 nh

1\ 1\

AX , + [3 (y , - a)

(A +$)

1\

): ­
':>,-

1\
1\ - [3-a= Y - x

L
2

P= (S" -AS,.) + (( S" -AS,,) 2 + 4AS,,)
2S"

2. OUTLIERS IN THE SLFR
In the regression (of y on x) model, the pres­
ence of a possible outlier is always associated
with a contamination in the dependent variable
y. A contamination that occurs in y, may be due
to the error term y, being drawn from .,som~

heavy-tailed distribution, e.g, E ,- N( 0, hJ , h',
> r 2

. Since no distributional assumption is
made for the regressor x (i.e, x is fixed) then
the occurence of a possible outlier in the
variable may only be caused by a recording or
typing error.

It should be noted from (1.3) that for A = + 00

or equivalently (52 = 0 or~; = Xi model (1.1)
reduces to a regression of Y on x while for A =

oor r2 = 0 model (1.1) becomes a regression
of x on y.

1\

h= A + [32

and

1\ 1\

where T = Y -a -[3x" ,

LIIl<" = constant - n log
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(3.3)

so that the estimators in (3.1) (i)-(ii) are con­
sistent.

In the fotmulation of the Bartlett 3-group­
mean estimators in (3.1) it was assumed that
there is no outlier in the x- or in the y- values.

However, some difficulties may arise in
using the grouping method if there is a possible
outlier in the data set. The possible difficulties
are
(a) the presence of the outlying observation

may cause the ordering of the x-values no
longer identical to the ordering of the ~r

values, i.e, the assumption in (3.3) may no
longer hold.

(b) the fact that the mean was used as the centre
of gravity of each group may result in the
nonrobustness of the Bartlett estimators.

In practice, however, it is difficult to
determine whether problem (a) does or does
not arise since the true values ~i are unlikely to
be known. Even if ~j are known, it is difficult to
guarantee that this problem does not occur
when an outlier is present. For problem (b),
the most appropriate choice is to adopt the
median as the centre of gravity of each sub­
group since it is more robust than the mean.
However, the robustness of the grouped­
median estimators may still not be guaranteed
if the presence of the outlier changes the or­
dering of the x-values. In this situation, only a
proper allocation of the observations in the
first and third groups can avoid the estimates
from being influenced by the outlier. Unfortu­
nately, the most appropriate choice of the
allocation, k, in this situation is not known. The
choice of k = n/3 was suggested for the no­
outlier situation and may not always be appro­
priate for the case where an extreme outlier
may be present.

that the optimal choice is k = n/3 a~ this will
minimize the sampling variance of f3 B'

Bartlett also shows that the estimators are
consistent if the grouping is unaffected by the
errors OJ' i.e, the ordering according to the Xi

is identical to the ordering according to the x.
In other words, for '

c= min{l~i+1 -~n,= i= 1, ...,n

it is assumed that

(3.1)(i)

(3.2) (ii)

(3.2) (iii)n'l = k

n' = n-k + 1
3

i= 1

j = I

" I

j -= I

1-=]

-IIY- = n' Y
1 3 I

i= J

x = n-IIx
i

i= I

and the y-values are first ordered according to
the magnitude of the x's, and

where k is the number of observations in the
first and third groups.

It is not necessary to take an equal number
of observations in each group especially when
n is indivisible by three. However, for the special
case of equally spaced ~j-values, Bartlett shows

the classical one is the simplicity of the calcula­
tions and the dropping of the assumption of
normality.

One of the well known grouping methods
suggested in the literature was that of Bartlett
(1949). The method consists of arranging the
y-values according to the ordered x-values,
forming three groups, omitting observations in
the middle group, and joining the two centre
of gravity (i.e, the means) of the remaining
groups by a straight line to get the desired
slope .estimator. In an obvious notation, the 3­
grouped-mean estimators of a and f3 proposed
by Bartlett (1949) are defined as

and
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The median-versions of (3.1) (i) and
(3.1(ii) may now be written as

alJ = med {Y,-t3xj,i= 1, ... ,n (3.4)(ii)

where

n~ and n~ are given by (3.2) (iii) and again the
)i-values are arranged in accordance with the
ordered values of the x's.

13 =()I -v)/(x -x),l:<=:::i:<=:::n (4.1)
tJ J" I I I

This yields (;Jslope values. The estimator

of the slope is then

(5.1 )

(4.5) (ii)

(4.5) (iii)

r= I

L!y,-IX -f3x .!

or

{is = median {a ,,}

where a. is computed from (4.3).
1J

Another Theil-type estimator was devised
by Siegel (1982) which is based on a repeated­
median method. This approach starts with the
pairwise slopes as in Theil's method, takes the
medians in two stages; first, at each point and
then across points. That is we find

(i) 13, = median {,(}

13 ,j is given by (4.1) yielding (n-l) slopes.

(ii) [3, = median {f3) (4.5) (i)

5. Ll-NORM ESTIMATOR
Harvey (1977) pointed out that for a simple
linear regression model, the Ll-norm regres­
sion (of yon x) which consists of minimizing

is perhaps the most natural generalisation of
the sample median in the location problem.

We now extend this well known method
to the problem of estimating the SLFR
parameters.

For the SLFR model in (1.1) the Ll-norm
estimators of IX and 13 are given by () and p
which minimize

1:::1

Brown (1982) suggests that the solution
to (5.2) i.e the Ll-estimates of a and b can be
obtained as follows: perform Ll-norm regres­
sions of y on x and x on y, from which their
respective estimates of a and bare obtained. By
computing the residuals from each fitted line,
the required estimates () and pare determined,
depending on which line i.e Y on x or x on y,
has the smaller sum of absolute deviation. That
is, by performing the Ll-norm regression of Y
on X we obtain ex, and p, which minimize R,
where .

"

R= L{lx, -~.! + IY, -IX -f3~n (5.2)

Finally,

til = median {y, - [3, x,}

which is the median of a set consisti ng n slopes.

(4.4)

(4.2) (i)

(3.4) (i)

aT = median {a 'j}

1f t = median {ff,J

x~ - x,

- -y, -y
13,,= ---

j.= med {y,} , • < .<n" _ z_ n

Y-; = med {y,}, 1:<=::: i:<=::: n',

K, = med { x,}, • < .<n" _ z_ n

x, = med {x,} , I:<=::: i:<=::: n',

4. THEIL'S AND REPEATED-MEDIAN
ESTIMATORS

Perhaps one of the simplest methods and yet
may produce estimates which are more robust
than the classical estimates is the one proposed
by Theil (1950).

This method begins with all possible pairs
of data points, calculates the slope obtained
from each point, and fin:llly determines the
median of these slopes. Assuming that the Xl,S

are all distinct, define

The estimator () is then given by

a= median {Y,-ffrxj (4.2)(ii)

Alternatively, in tiT (4.2) (ii) can be
obtained from a procedure proposed by Maritz
(1979) which is similar to the one that leads to

(4.1). Maritz derives the estimate of the inter-

cept term by calculating the intercepts for (nJ
. . 2

pairs, I.e,

a =(X)I -x )I)/(X -x),1:<=:::i:<=:::j:<=:::n(4.3)
I} I 1 } I I )

Then the intercept estimator is given by

and
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The required estimates of [a,,B] are then
given by either [d, ' fi, ] or [ &" fiJ according
to the smaller of

R~ = I1y, -{X, - 5, x,l- max{IY, - a, -5, x,l}
(5.5) (i)

and similarly, performing the Ll-norm regres­
A

sion of x on y yields &,and ,Bx which minimize

R" where

(5.6)

(5.5) (iv)

(5.5) (ii)

(5.5) (iii)

III = Il- r + I

"
R',=lu"I- LV,")

A A

U, := y, -iX, -[3,x, i= 1, ...,n

, "I I "(.,,,1R, := ""-1 U', - LJ U,
1= I /11= /1- r+ I

where

and
(m) I IU, = the m-th largest absolute y-residuals, U'i

and r is the number of the largest absolute re­
siduals to be eliminated.
Similarly, (5.5) (ii) can now be expressed in the
form

Note that the uncorrected sums of abso­
lute residuals associated with a poor fitted line
will always have a larger value than the sum of
absolute residuals corresponding to the best
fitted line. This is because the poor fitted line
does not pass through the bulk of the data
while the best one should pass through most of
the data points. Therefore, the correct choice
for the estimate comes from the fact that the
smaller value of the sum of absolute residuals
should always be associated with the best fitted
line.

However, a proper choice for the esti­
mates based on the two sums of absolute
residuals may not matter very much if no con­
taminated data point or only a mild outlying
observation is present in the data set. This is
because choosing either one of the two sums
of absolute residuals will still lead to reasonably
good estimates.

In situations where several outliers are
likely to be present (5.5) (i)-(ii) can be modi­
fied so that more than one largest absolute
residual can be omitted. That is, if there are r
possible outliers in the data set then (5.5) (i)
can be written as

Then the required estimates of [a, f3] are
then given by either [d" g,] or [d" /3,]
according to the smaller of .

", "I A AR,= LJ x;-(Y,-a,)/ [3,1-
1= I

max {I x, -( y, -& ,) / ;, I}

(5.4)

(5.3) (i)

(5.3) (ii)

[R" R)

l= 1

" A A

R,= IJx,-Cy,-iX,)/ ,Bxl

j~ I

~I A A

R, = LoP, -iX, -,By x,1

However, Brown (1982) rejects the esti­
mates obtained from the criterion (5.4) for the
starting values because they may over- or under­
estimate a and [3, respectively. Over- or under­
estimation of the parameters occurs when the
estimates chosen by the criterion in (5.4) are
the ones that are influenced by the outlier.

5.1. Modified L1-norm Estimator
In this section we propose a modification of the
criterion in (5.4). The rationale behind this
modification is to establish a new Ll-norm
criterion that will avoid the possibility of under­
or over-estimation of the parameters.

Under- or over-estimation of the para­
meters was due to the inclusion of the outlier's
residual in R, and R" respectively. This has
resulted in choosing incorrect estimates since
the outlier's residual associated with the poor
fitted line will always be smaHer than the one
associated with the best (or robust) fitted line.

To avoid such an incorrect choice for the
estimates, we devise a procedure in which the
largest residual is to be excluded from the overall
sum of absolute residuals in each direction. By
omitting the largest residuals which are usually
associated with the possible outlier the compa­
rison between Rand R is now based on the

x J
corrected sum of absolute residuals associated
with uncontaminated data points. Let the cor­
rected sums of absolute residuals correspond­
ing to R, and R, be R', and R'" respectively,
where
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OLl

MLl

BDYX

BMN

The codes for the various estimators are as
follows:
SLFR The ML of SLFR given in (1.4) (i)­

(ii)
The Bartlett's group median estima­
tors given in (3.4) (ii)
The Bartlett's 3-group mean estima­
tors given in (3.1) (i)-(ii)
The original Ll-norm estimators de­
fined by criterion (5.4)
The modified Ll-norm estimators de­
fined by criterion (5.6)

THEIL Theil's estimators given in (4.2) (i)­
(ii)

SIEGEL: Siegel's estimators given in (4.5) (i)­
(ii)

From the results in Table 1(b), the mean­
based estimators, i.e, SLFR and BMN were badly
affected by the extreme outlier in the dataset.
The median-based estimators such as ML1,
BDYX, THEIL and SIEGEL performed reasona­
bly well for both types of contamination.

For OL1, its performance against the
extreme outlier suffers from the incorrect

1\

choices of the estimates d and f3 which over-
estimate a and 13, respectively.

In order to make better comparisons
among the various starting estimators, let ~ and
II '

13" 1= 1, ... ,100 represent the hundred values
of the estimates of the SLFR parameters, and
let the 'efficiency' of the various estimators to
be measured by the 'empirical mean square
error' criterion which is defined as

TABLE I (b)

Estimates

Estimator 11 p
SLFR 2.530 2.641
BMN 2.479 1.615
BDYX 0.909 1.114
OLl 3.050 2.586
MLl 0.819 1.013
THEIL 1.059 1.073
SIEGEL 0.935 1.107

and

U~.j·=the m-th largest absolute xi-residuals, IU x J
We shall now compare the performance

of the modified Ll-norm estimat9r in (3.6) with
the original Ll-norm estimators in (3.4).

Example: (Contamination in the Y'5)
This example presents the analysis of a data set
of 11 observations generated from the SLFR
model in (1.1). The true parameter values are

a=f3 = 1 and O"£i-N(O,0.52), i= 1, ... ,10

and E 11 ~ JI.... 0,10
2

).

The data set are given in Table 1(a).
To compute the L1-norm estimates we

use AG-routine E02GAF (based on the algo­
rithm of Barrodale and Roberts (1973)).

We now summarize the results for the
estimates from the various methods in the
following Table 1(b) .

1= I

Yi

Xi

Yi

TABLE I (a)

2 3 4 5 6 7

- 5.605 - 3.966 - 2.956 - 1.772 -1.215 - 0.442 1.199

-3.857 -3.197 -3.112 -1.378 -0.112 1.906 1.833

8 9 10 11

2.984 3.200 3.675 4.288

2.868 4.060 5.003 22.366

94 PERTANlKA VOL. 12 O. 1,1989



ON ROBUST ALTERNATIVES TO THE MAXIMUM LIKELIHOOD ESTIMATORS OF A LFR

1\
where L=lOO, e is the estimate of the para-
meter e.

The hundred samples were generated
under the following sampling situations;

a = f3 = 1, n = 11, - 5 ~ ~,~ 5, equally spaced
and with increment l.

The uncomaminated errors 8;- N( 0, (J2)

where(}= 0.5, and£,-N(0,r2
), r =0.5. For

each contaminated sample it is assumed that
the contamination occurs either in the x's or in
the y's.

For a contamination in xr ' the values of
the x

r
outlying observation and the correspond­

ing uncontaminated Yr observation are gene­
rated by

x,=~r+8, where 8,-Mo,h2

)

and

y, = 1 + ~,+ ~ ,,£,- N( 0, r 2
), and

Similarly, for a contamination in Y" the
values of the Y

r
outlying observation and the

corresponding uncontaminated x, are obtained
from

x, =~, + 8, where 8,-N(0,(}')

y, = 1 + ~,+ £" E,- IV(0, h
2

), and h
2

> (J2.

In each contaminated sample, it is as­
sumed that only a single outlier is present and
this outlier is located at an r-th position and T

is either fixed or random. The selected value of
a fixed Tis T= 11, i.e, the outlier is to be located
at the last data point. For the case where the
location of the outlier is selected at random T

can take any value between 1 and n. The select­
ed values of hare

h = 2.0, 6.0 and 10.0

In this simulation study, the NAG-library
subroutine G05DDF was used to generate the
normal variates 8 and £, respectively. All com­
puter programs were written in FORTRAN
and executed on the DEC-I0 computer system
at the University of Dundee.

6. SIMULATION RESULTS AND
DISCUSSION

Tables 2(a)-(b) demonstrate the performances
of the various estimators for the case of con-

tamination in x" while Tables 3(a)-(b) for the
contamination in y,.

The performance ofan estimator isjudged
from its MSE value with respect to the true
values of a and f3, where a = f3 = 1. Estimator
A is said to perform better (or be more efficient
or more robust) than estimator B if the MSE va­
lue associated with A is smaller than that of B.

The percentage efficiency between two
estimators is defined as the reciprocal of the

. (the lowest MSE) .
ratIO x 100% IS also com-

(the largest MSE)
puted. For each estimator these efficiencies as
well as their ranks (where the smallest rank
corresponds to the smallest value of the effi-

. 1\,
Clency, and (so forth) for & and f3 are dis-
played in the second and the third rows, respec­
tively.

Inspection of the results in Tables 2-3
illustrates that in a situation where there is no
possible outlier (i.e, h = 0.5), the classical esti­
mators such as SLFR and BMN perform well.

In the presence of an extreme outlier (for
h ~ 6) Theil-type estimators (i.e, THEIL and
SIEGEL) and MLI seems to be most robust
among those considered. Its MSE values are
relatively smaller (and the percentage efficien­
cies are higher) than those of the other estima­
tors in all situations.

The rank averages of the percentage

efficiencies for & and Palso agrees with the
fact that the most robust estimators are SIEGEL
and THEIL and they are closely followed by
MLl.

In situations where less severe outliers are
present the performance of OLI seems to be
comparable to that ofMLl. However, OLl tends
to perform badly when more extreme outliers
are likely to be present. This was due to the
incorrect choices ofestimates made by the OLl­
criterion in (5.4) which either over- or under­
estimates the true parameters. This can be seen
from the poor performance of OLl in Tables
3(a)-(b) compared to those of MLl and Theil­
type estimators.

The high values of MSE (correspondingly
the small values of percentage efficiencies) for
SLFR and BM simply confirm the fact that
these mean-based estimators are very sensitive
to the presence of an extreme outlier.
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TABLE 2(a): a = ~ = 1, n - 11
xr - contamination; r = 11, fixed.

No Outlier Outlier - XII RANK RANK
h 0.5 2.0 6.0 10.0 AVE. AVE

B d
1\ ex B B B d+BEst. d f3 d d

SLFR MSE .054 .004 .082 .013 .251 .060 .273 .133
% eff 100 100 95 69 34 20 32 9
Rank 6.5 6.5 4 1 1 1 2 1 3.4 2.4 3.9

BMN MSE .054 .004 .084 .010 .230 .040 .332 .071
% eff 100 100 93 90 37 30 26 17
Rank 6.5 6.5 3 5 2 2 1 2 3.1 3.9 3.5

BDYX MSE 065 .008 .078 .012 .105 .041 .099 .041
% eff 83 50 100 75 81 29 88 29
Rank 5 1.5 7 3 4 3 6 4 5.5 2.9 4.2

OLl MSE .074 .008 .087 .013 .109 .023 .161 .067
% eff 73 50 89 69 78 52 54 18
Rank 2.5 1.5 1.5 2 3 4 3 3 2.5 2.6 2.6

MLl MSE .083 .007 .080 .011 .097 .015 .100 ..012
% eff 73 57 97 82 87 80 87 100
Rank 2.5 3 6 4 5 5 5 6.5 4.6 4.6 4.6

THEIL MSE .074 .005 .087 .009 .085 .013 .101 .015
% eff 73 80 89 100 100 92 86 80
Rank 2.5 5 1.5 7 7 6 4 5 4.0 5.8 4.9

SIEGEL MSE .076 .006 .081 .010 .092 .012 .087 .012
% eff 71 67 96 90 92 100 100 100
Rank I 4 5 6 6 7 7 6.5 4.8 5.9 5.3

TABLE 2(b): a = ~ = I, n = 11
x

r
- contamination; r random.

No Outlier Outlier - X
r

RANK RANK
h 0.5 2.0 6.0 10.0 AVE. AVE.

1\ 1\ B B B 1\

Est. b f3 b f3 d b b d+f3

SLFR MSE .054 .004 .103 .008 .239 .046 .264 .I 23
% eff 100 100 81 100 35 24 32 8
Rank 7 6.5 I 5 1.5 1 2 1 2.9 3.4 3.1

BMN MSE .054 .004 .097 .008 .239 .038 .363 .068
% eff 100 100 86 100 35 29 23 15
Rank 6 6.5 2 5 1.5 2 1 2 3.1 3.9 3.5

BDYX MSE .074 .008 .087 .012 .101 .037 .084 .023
% eff 83 50 96 67 82 30 100 43
Rank 5 I 5.5 1.5 5 3 7 4 5.6 2.4 4.0

OLl MSE .077 .007 .089 .012 .108 .017 .135 .051
% eff 70 57 94 67 77 65 62 19
Rank 2.5 2.5 3.5 1.5 3 4 3 3 3.0 2.8 2.9

MLl MSE .080 .007 .084 .011 .083 .011 .086 .012
% eff 67 57 100 73 100 100 97 83
Rank 1 2.5 7 3 7 6.5 6 6 5.3 4.5 4.9

THEIL MSE .075 .005 .089 .008 .104 .015 .094 .014
% eff 72 80 94 100 81 73 89 71
Rank 4 5 3.5 5 4 5 4 5 3.9 5.0 4.5

SIEGEL MSE .077 .006 .087 .009 .097 .011 .089 .010
% eff 70 67 96 89 85 100 94 100
Rank 2.5 4 5.5 4 6 6.5 5 7 4.8 5.4 5.1
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As far as computational aspect is con­
cerned, the Theil type estimators (i.e, THEIL
and SIEGEL) and the Bartlett-median estima­
tor, BDYX, are much easier to compute than
the other estimators. In the case of Ll-norm
estimator (either aLl or MLl) its formulation
was originally based on. a linear programming
scheme (see Wagner 1959) which is compu­
tationally cumbersome. However, this difficulty
has been reduced considerably with the pres­
ence of an efficient algorithm proposed by
Barrodale and Roberts (1973).

7. CONCLUSION
The numerical evidence shows that the Theil­
type estimators (i.e, THEIL and SIEGEL) and
MLI are most robust among those candidates
presented in the study. The practical advantage
of the Theil-type estimators over MLl is their
simple computations. On the other hand, MLI
estimates can be obtained efficien tly when such
an algorithm set out by Barrodale and Roberts
(1973) is available.

These robust estimates can be used as
starting values in other robust estimination pro­
cedures of the SLFR such as the M-estimation
of Huber (1964).
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