UNIVERSITY PUTRA MALAYSIA

PROPERTIES OF VANILLIN AND ITS EFFECTS ON COLORECTAL CANCER IN VITRO AND IN VIVO

HO KET LI

IB 2011 27
PROPERTIES OF VANILLIN AND ITS EFFECTS ON COLORECTAL CANCER

IN VITRO AND IN VIVO

HO KET LI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA
2011
PROPERTIES OF VANILLIN AND ITS EFFECTS ON COLORECTAL CANCER

IN VITRO AND IN VIVO

By

HO KET LI

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia,
In Fulfillment of the Requirements for the Degree of Doctor of Philosophy
August 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

PROPERTIES OF VANILIN AND ITS EFFECTS ON COLORECTAL CANCER

IN VITRO AND IN VIVO

By

HO KET LI

August 2011

Chairman: Professor Maznah Ismail, PhD
Faculty : Institute of Bioscience

Vanillin is responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies showed that vanillin was a good red blood sickle cell inhibitor, anti-microbial agent and anti-mutagen. However, vanillin must be administered at high concentrations and prevented from being oxidized by the upper gastrointestinal tract to be medically effective. Hence, the objectives of this study were: i. to investigate the cytotoxic properties of vanillin on HT-29 colorectal cancer cell line; ii. to assess the negative effect of vanillin when administered at high concentrations in vivo; iii. to investigate the chemopreventive properties of vanillin on colorectal cancer and iv. to study the effects of vanillin on expression of selected genes in vivo. Methods used to study the cytotoxic effects include cytotoxicity assay, double staining cell morphological analysis, cell cycle analysis, apoptosis test and cell proliferation assay. The negative effect of oral and intra-peritoneal administration of vanillin to Sprague-Dawley rats in unoxidized form at high concentrations (150 mg/kg
and 300 mg/kg) was also investigated. Following the administration, animal behavior was observed and recorded. After 14 weeks of vanillin administration, the effects of vanillin on blood cells, kidney, liver and brain were studied. For the chemopreventive properties of vanillin, rats were injected with azoxymethane (AOM) and subsequently treated with vanillin. Aberrant crypt foci (ACF) counts and multiplicity were recorded. RNA was extracted from colon for DNA repair, apoptosis, cell cycle, anti-inflammation, proto-oncogene, colorectal cancer biomarker and tumor suppressor gene expressions study. Findings from the *in vitro* study showed that vanillin was cytotoxic towards HT-29 and 3T3 cells with the IC$_{50}$ value of 400 µg/ml and 1000 µg/ml respectively. Vanillin also induced apoptosis and cell cycle arrest. Different concentrations of vanillin showed arrest of cell cycle at different checkpoints. G$_0$/G$_1$ arrest was noted at lower concentration of vanillin (200 µg/ml) while G$_2$/M arrest occurred at higher concentration of vanillin (1000 µg/ml). From the *in vivo* study, results showed that treatment of 300 mg/kg of vanillin by intra-peritoneal injection caused the rats to be unconscious without exerting any negative effect on blood cells, kidney and liver. Further analysis with GenomeLab GeXP genetic system on brain tissues showed that the expression of most xenobiotic metabolism, cell progression, tumour suppressor, DNA damage and inflammation genes was maintained at normal level. However, the expressions of a few xenobiotic metabolism, cell cycle arrest and apoptosis genes were up-regulated by 5 % ethanol injection. This shows that 5% ethanol could pose negative effects onto the brain cells. Nevertheless, when 5 % ethanol was injected together with vanillin, the expression of genes was comparable to normal level. Hence, it is postulated that vanillin might have neuro-protective property. For the chemopreventive effect, AOM-injected rats treated with vanillin have significantly higher (p<0.05) ACF counts and multiplicity compared to the
control group. The colon gene expression analysis showed that vanillin could enhance recombinational repair and mismatch repair, arrest cell at cell cycle checkpoints, increase the expression of tumour suppressor gene, colorectal cancer biomarker and proto-oncogene. However, vanillin did not induce apoptosis and inflammation in ACF-bearing colon. In conclusion, vanillin could induce cytotoxic effects on colorectal cancer cells. It was not showing negative effects when administered at high concentrations through oral and intra-peritoneal injections. However, the ACF count and multiplicity indicate that vanillin was a co-mutagen instead of chemopreventive agent in AOM-injected rats. Nevertheless, it should be noted that only intraperitoneally injected vanillin would become co-mutagen, orally administered vanillin is not a co-mutagen.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Doktor Falsafah

FUNGSI DAN KESAN VANILLIN ATAS KANSER KOLON SECARA IN VITRO DAN IN VIVO

Oleh

HO KET LI

August 2011

Pengerusi: Profesor Maznah Ismail, PhD

Fakulti: Institut Biosains

Vanilin bertanggungjawab untuk memberi rasa dan bau vanila, satu agen perisa yang diguna dengan meluas. Kajian lepas menunjukkan bahawa vanilin merupakan perencat sel darah merah sabit, agen anti-mikrob dan anti-mutagen yang baik. Namun demikian, vanilin perlu diberikan pada kepekatan yang tinggi dan tidak boleh dioksidakan di bahagian perut dan usus untuk kesan perubatannya yang berkesan. Oleh yang demikian, tujuan kajian ini adalah untuk 1. menyelidik kesan sitotoksik vanilin ke atas sel kanser kolon HT-29; ii. menyelidik kesan negatif vanilin apabila diberikan pada kepekatan yang tinggi secara in vivo; iii. menyelidik kesan pencegahan vanilin terhadap kanser kolon dan iv. menyelidik kesan vanilin atas penzahiran gen kolon. Kaedah yang digunakan untuk mengkaji kesan sitotoksik vanilin termasuk: Ujian sitotosik, analisis morfologi sel dengan dua-pewarnaan,
analisis kitaran sel, ujian apoptosis) dan ujian pertumbuhan sel. Kesaran negatif vanilin apabila diberi kepada tikus Sprague-Dawley dengan cara oral dan suntikan intra-peritoneal pada kepekatan yang tinggi (150 mg/kg dan 300 mg/kg) juga dikaji. Selepas vanilin diberikan, tingkah-laku tikus diperhatikan dan dicatatkan. Selepas diberi vanilin untuk 14 minggu, kesan negative vanillin atas sel darah, ginjal, hati dan otak juga dikaji. Bagi kesan pencegahan kanser kolon, tikus disuntik dengan azoksimetana (AOM) dan kemudiannya dirawat dengan vanilin. Bilangan “aberrant crypt foci” (ACF) dan keserbaragamannya direkodkan. RNA diekstrak dari kolon untuk kajian penzahiran gen termasuk: gen pembaikkan DNA, gen apoptosis, gen kitaran sel, gen perencat keradangan, proto-onkogen, biomarker kanser kolon dan gen penindas kanser. Keputusan kajian in vitro menunjukkan bahawa vanilin adalah sitotosik terhadap sel HT-29 dan 3T3 dengan IC₅₀ 400 µg/ml dan 1000 µg/ml masing-masing. Vanilin juga boleh menyebabkan apoptosis dan perhentian kitaran sel. Vanilin dalam kepekatan yang berbeza akan menghentikan kitaran sel pada fasa yang berbeza. Perhentian sel pada fasa G₀/G₁ boleh dicapai dengan menggunakan vanilla pada kepekatan yang rendah (200 µg/ml) dan perhentian pada fasa G₂/M boleh dicapai dengan menggunakan vanilin pada kepekatan yang tinggi (1000 µg/ml). Daripada kajian kesan negative vanillin, rawatan 300 mg/kg secara suntikan menyebabkan tikus mengalami keadaan tidak sedar tanpa menunjukkan kesan negatif terhadap sel darah, ginjal dan hati. Analisis selanjutnya melalui system genetic GenomeLab GeXP ke atas tisu otak tikus menunjukkan bahawa penzahiran kebanyakan gen metabolime xenobiotik, perkembangan sel, penindas kanser, kerosakan DNA dan keradangan adalah pada paras normal. Walau bagaimanapun, penzahiran beberapa gen metabolime xenobiotik, penahanan kitaran sel dan apoptosis telah ditingkatkan dengan suntikan 5 % etanol. Ini menunjukkan 5%
ethanol boleh menyebabkan kesan negative atas sel otak. Namun demikian, apabila 5 % etanol disuntik bersama-sama dengan vanilin, penzahiran gen kembali ke paras normal. Vanilin dijangka mempunyai kesan perlindungan sel neuro. Untuk kesan pencegahan, tikus yang disuntik dengan AOM dan dirawat dengan vanilin mempunyai kiraan ACF dan keserbaragaman ACF yang lebih tinggi (p<0.05) berbanding dengan kumpulan kawalan. Analisis penzahiran gen menunjukkan bahawa vanilin boleh meningkatkan mekanisme pembaikian DNA rekombinanis, pembaikian DNA mismatch repair (MMR), menahan kitaran sel, meningkatkan penzahiran gen penindas kanser, biomarker kanser kolon dan proto-onkogen. Walau bagaimanapun, vanilla tidak mengaruh apoptosis atau keradangan dalam kolon yang mengandungi ACF. Kesimpulannya, vanilin boleh mengarah kesan sitotoksik ke atas sel kanser kolon dan tidak memberi kesan negatif apabila diberi pada kepekatan yang tinggi secara oral dan suntikan intra-peritoneal. Walau bagaimanapun, vanilin merupakan co-mutagen dan bukan agen perlindungan kimia dalam tikus yang disuntik dengan AOM. Namun demikian, hanya vanillin yang diberi dengan cara suntikan akan menjadi co-mutagen. Vanillin yang diberikan secara oral bukan co-mutagen.
ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Professor. Maznah Ismail for her supervision, support and guidance. Without her full support, I would not be able to finish my research.

Besides, special thanks to all my co-supervisors, Associate Professor Dr. Chong Pei Pei and Dr. Latifah Saiful Yazan. They have given me support and precious comments when I was facing problems in my research.

A big thank you also dedicated to all the staff and friends in the Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia. Kak Siti Muskinah had been a great help and her contributions to my work will always be remembered.

Last but not least, I am greatly thankful to my parents, siblings, grandmother, uncles and aunties for their full support of my studies. They make me feel proud of my achievements.
I certify that a Thesis Examination Committee has met on 18th August, 2011 to conduct the final examination of Ho Ket Li on his thesis entitled “Properties of Vanillin on Colorectal Cancer \textit{in vitro} and \textit{in vivo}” in accordance with the Universities and university colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

\textbf{Suhaila binti Mohamed, Ph.D.}
Professor
Institut of Biosains
Universiti Putra Malaysia
(Chairman)

\textbf{Fauziah bt Othman, Ph.D.}
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

\textbf{Sharida Binti Fakurazi, Ph.D.}
Professor Madya
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

\textbf{Ranjana Prasad Bird, Ph.D.}
Professor
Vice President Research
Sunset Avenue Windsor Canada
(External examiner)
This thesis submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory Committee were as followed:

Maznah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Latifah Saiful Yazan, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: ______

X
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

HO KET LI

Date: 18th August 2011
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>VIII</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>X</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XIX</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Significance of Study 5
1.2 General Objective 6
1.3 Specific Aims 6

2. LITERATURE REVIEW

2.1 Vanillin 7
 2.1.1 Traditional Uses of Vanillin 9
 2.1.2 Modern Uses of Vanillin 10
 2.1.3 Bioavailability of Vanillin 13
 2.1.4 Negative Effect of Vanillin 15
2.2 Colon 21
2.3 Cancer 22
 2.3.1 Colorectal Cancer 25
 2.3.2 Risk Factor of Colorectal Cancer 28
 2.3.3 Aberrant Crypt Foci (ACF) 28
2.4 Characteristics of Anti-Cancer Drugs 29
2.5 Apoptosis 30
2.6 Cell Cycle 33
 2.6.1 Cell Cycle Checkpoints 34
 2.6.2 Cyclin-Dependent Kinase and Cyclin 35
2.7 Liver and Kidney Functions 36
2.8 Xenobiotic Metabolisms 37
2.9 Brain and Unconsciousness 38
2.10 Blood Cells 39
2.11 DNA-Repair Mechanism 42
2.12 Azoxymethane (AOM) 50
2.13 GeXP Analysis 50
3. APOPTOSIS AND CELL CYCLE ARREST OF HUMAN COLORECTAL CANCER CELL LINE HT-29 INDUCED BY VANILLIN

3.1 Introduction

3.2 Materials and Methods
3.2.1 Materials
3.2.2 Preparation of Cell Culture Medium
3.2.3 Culture of HT-29 Cells and NIH/3T3 Cells
3.2.4 Cytotoxicity Test
3.2.5 Double Staining Cell Morphological Analysis
3.2.6 Cell Cycle Analysis
3.2.7 Apoptosis Test
3.2.8 Cell Proliferation Assay
3.2.9 Statistical Analysis

3.3 Results
3.3.1 Effects of Vanillin and Vanillic Acid on Cell Viability
3.3.2 Effects of Vanillin on Cell Morphology
3.3.3 Effects of Vanillin on the Cell Cycle
3.3.4 Incidence of Apoptosis in HT-29 Cells Following the Treatment with Vanillin
3.3.5 Effects of Vanillin on HT-29 Cells Proliferation

3.4 Discussion

4. ANTI-COLORECTAL CANCER PROPERTIES OF VANILLIN ON RATS VIA ORAL AND INTRA-PERITONEAL ADMINISTRATION AND ITS RELATIONSHIP WITH DNA-REPAIR MECHANISMS

4.1 Introduction

4.2 Materials and Methods
4.2.1 Materials
4.2.2 Solubility of Vanillin in Ethanol
4.2.3 Animals and Treatments
4.2.4 Body Weight
4.2.5 Aberrant Crypt Foci (ACF) Counts
4.2.6 Aberrant Crypt Foci (ACF) Multiplicity
4.2.7 Tissue Samples and RNA Extraction
4.2.8 GeXP Analysis of Rat's Colon Genes Expression
4.2.9 Statistical Analysis

4.3 Results
4.3.1 Solubility of Vanillin in Ethanol
4.3.2 Aberrant Crypt Foci (ACF) Counts
4.3.3 Aberrant Crypt Foci (ACF) Multiplicity
4.3.4 GeXP Analysis of Rat's Colon Genes Expression

4.4 Discussion
5. NEGATIVE EFFECTS OF VANILLIN ON RATS VIA ORAL AND INTRA-PERITONEAL ADMINISTRATION

5.1 Introduction 117
5.2 Materials and Methods 118
 5.2.1 Materials 118
 5.2.2 Animals and Treatments 118
 5.2.3 Body Weights and Blood Sampling 120
 5.2.4 Organ Weight 120
 5.2.5 Whole Blood Cell Count 120
 5.2.6 Liver and Kidney Functions Test 121
 5.2.7 Tissue Samples and RNA Extraction 123
 5.2.8 GeXP Analysis of Rat’s Brain Genes Expression 124
 5.2.9 Statistical Analysis 129
5.3 Results 130
 5.3.1 Animal Behavior 130
 5.3.2 Organ Weight 135
 5.3.3 Whole Blood Cell Count 137
 5.3.4 Liver and Kidney Functions Test 137
 5.3.5 Rat’s Brain Genes Expression 139
5.4 Discussion 144

6. GENERAL DISCUSSION, CONCLUSION AND FUTURE WORK

6.1 General Discussion and Conclusion 150
6.2 Further Work 152

REFERENCES 153
APPENDICES 167
BIODATA OF STUDENT 182