

UNIVERSITI PUTRA MALAYSIA

PHYSICOCHEMICAL, TEXTURAL AND ORGANOLEPTIC PROPERTIES OF REDUCED FAT CHEDDAR CHEESE

LEILA NATHEGHI

FSTM 2011 12

PHYSICOCHEMICAL, TEXTURAL AND ORGANOLEPTIC PROPERTIES OF REDUCED FAT CHEDDAR CHEESE

December 2011

This thesis is dedicated to my supervisor professor Mohd Yazid bin Abd. Manap and my parents who are always giving me their unlimited support

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

PHYSICOCHEMICAL, TEXTURAL AND ORGANOLEPTIC PROPERTIES OF REDUCED FAT CHEDDAR CHEESE

By

LEILA NATEGHI

December 2011

Chairman: Professor Mohd Yazid bin Abd. Manap, PhD

Faculty: Food Science and Technology

Dairy products, particularly cheese products are the main source of saturated fats and cholesterol. It is well established that excessive consumption of fat increases the risk of ailments like obesity and cardiovascular diseases. Reduced and low fat cheese often exhibit poor sensory quality due to the reduction of fat which plays a critical role in flavor and texture.

The major objective of this research is to improve the textural and the organoleptic properties of the reduced fat cheddar cheese by the application of special adjunct starter cultures (*Lactobacillus helveticus, Lactobacillus casei, Streptococcus thermophilus*) and fat replacers namely xanthan gum and sodium caseinate. Initially different xanthan gum to sodium caseinate ratios (xanthan gum: 0, 0.015, 0.030, 0.045 (% w/w), Sodium caseinate: 0, 0.15, 0.30, 0.45 (% w/w)) were added as fat replacer to different fat levels of cheese milk (1.25, 2, 2.75, 3.5) (% w/w) in order to

investigate their ability to improve textural properties and yield of reduced fat cheddar cheese. Textural optimization was applied to obtain the best formulation to produce reduce fat cheddar cheese by using fat replacers. The results revealed that the type and concentration of fat replacers significantly (p < 0.05) affected the textural and composition of reduced fat cheddar cheeses. The multiple optimization results of the current study showed that using the high level of xanthan gum (0.045% w/w) in absence of sodium caseinate (0.000% w/w) in half-fat cheeses (2.000% w/w milk fat content) improved the texture and yield of cheddar cheeses with similar textural properties (TPA) of full fat ones and overall desirability of 90.065%. The best optimum formulation was chosen in order to develop the flavor by using single and mixed adjunct starter cultures (i.e. *Lactobacillus helveticus, Lactobacillus casei, Streptococcus thermophilus*).

Profiles of organic acid concentrations, free amino acids, volatile flavor compounds and consumer acceptability showed that the use of *Lactobacillus helveticus* (10^8) as an adjunct starter culture significantly (p < 0.05) improved the flavor score of reduced fat cheddar cheeses compared to use of *Lactobacillus casei* and *Streptococcus thermophilus* and full fat cheddar cheese as a control. Moreover, proteolytic rate of cheeses containing the adjunct starter culture were significantly greater than full fat cheddar cheese. The results obtained by the instruments in this study interestingly verified the descriptive sensory analysis results. Incorporation of xanthan gum with *Lactobacillus helveticus* allowed a considerable fat reduction with no detrimental effect on cheddar cheese overall quality and consumer acceptability. Although xanthan gum significantly affected the textural properties of reduced fat cheddar cheeses, the effect of sodium caseinate as a protein-based fat mimetic was imperceptible. Therefore, further extensive investigations are needed to clarify the effect of other fat mimetics and starter cultures on textural properties and flavor of reduced fat cheddar cheeses. This study recommends that a high quality reduced fat cheddar cheese can be obtained by using xanthan gum as carbohydrate-based fat mimetics and *Lactobacillus helveticus* as an adjunct starter culture.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Doktor Falsafah

SIFAT FIZIKOKIMIA, TEKSTUR DAN ORGANOLEPTIK KEJU CHEDDAR RENDAH LEMAK

Oleh

LEILA NATEGHI

Disember 2011

Pengerusi: Mohd Yazid bin Abd. Manap, PhD

Fakulti: Sains dan Teknologi Makanan

Produk tenusu, terutamanya keju merupakan sumber utama lemak tepu dan kolesterol. Pengambilan lemak yang berlebihan meningkatkan kadar risiko untuk menghidap penyakit seperti obesiti dan kardiovaskular. Keju rendah lemak selalunya menunjukkan kualiti sensori yang rendah disebabkan oleh pengurangan lemak yang berfungsi dalam penghasilan perasa dan tekstur.

Objektif utama penyelidikan ini adalah untuk meningkatkan kualiti tekstur dan ciriciri organoletik keju cheddar rendah lemak dengan mengaplikasikan kultur pemula hidup (*Lactobacillus helveticus, Lactobacillus casei, Streptococcus thermophilus*) dan pengganti lemak iaitu xanthan gam dan nitrium kaseinat. Kadar xanthan gam kepada nitrium kaseinat yang digunakan sebagai pengganti lemak adalah 0, 0.015, 0.030, 0.045 (% v/v) kepada 0, 0.15, 0.30, 0.45 (% v/v), ditambah ke dalam kadar lemak yang berbeza (1.25, 2, 2.75, 3.5) (%w/w) di dalam susu keju, bagi tujuan mengkaji kebolehan kedua-duanya dalam memperbaiki tekstur dan menpertingkatkan hasil keju cheddar rendah lemak. Optimasi tekstur digunakan bagi mendapatkan formulasi terbaik bagi mengasilkan keju cheddar rendah lemak. Kajian menunjukkan jenis dan kepekatan pengganti lemak memberi kesan signifikan terhadap tekstur dan komposisi keju cheddar rendah lemak. Beberapa hasil optimasi menunjukkan penggunaan xanthan gam pada kepekatan tinggi (0.045% v/v) tanpa kehadiran nitrium kaseinat (0.000% v/v) di dalam keju separa lemak (2.00% v/v komposisi lemak susu) berjaya memperbaiki tekstur dan hasil keju cheddar rendah lemak dengan menunjukkan nilai ciri-ciri tekstur (TPA) yang serupa dengan keju lemak penuh dan peratusan keinginan yang tinggi iaitu 90.065%. Formulasi optimum terbaik kemudiannya dipilih untuk penghasilan perasa menggunakan satu atau lebih kultur pemula hidup (*Lactobacillus helveticus, Lactobacillus casei, Streptococcus thermophilus*).

Kepekatan asid organi, asid amino bebas, kompaun perasa meruap dan penerimaan pengguna menunjukkan penggunaan *Lactobacillus helveticus* (10^8) sebagai kultur pemula memberikan signifikasi (p < 0.05) peningkatan skor perasa bagi keju cheddar rendah lemak berbanding penggunaan *Lactobacillus casei* dan *Streptococcus thermophilus* serta keju cheddar lemak penuh. Disamping itu, kadar proteolytic bagi keju yang mengandungi kultur pemula hidup adalah lebih tinggi berbanding keju cheddar lemak penuh. Keputusan yang di dapati melalui ujian instrumenatsi menyokong keputusan ujian sensori. Penggunaan xanthan gam dan *Lactobacillus helveticus* membolehkan pengurangan peratusan lemak tanpa memberi kesan negatif terhadap kualiti keseluruhan keju cheddar dan penerimaan pengguna. Walaupun xanthan gam memberi kesan signifikant terhadap ciri-ciri tekstur keju cheddar

terlindung. Oleh sebab itu, lebih banyak kajian perlu dijalankan untuk mengkaji kesan mimik lemak dan kultur pemula hidup terhadap ciri-ciri tekstur dan perasa keju cheddar rendah lemak. Kajian ini mencadangkan keju cheddar rendah lemak berkualiti tinggi boleh dihasilkan dengan penggunaan xanthan gam sebagai karbohidrat pengganti lemak dan *Lactobacillus helveticus* sebagai kultur pemula hidup.

ACKNOWLEDGEMENTS

Thanks God for His helping out during whole course of my life. I would like to take this opportunity to express my heartfelt gratitude to a number of people without whose help and support this thesis would never have been finished.

First and foremost, I wish to extend my heartfelt gratitude to my main supervisor Prof. Dr Mohd Yazid Abdul Manap (Faculty of Food Science and Technology, Department of Food Technology) for his supervision, guidance, and encouragement. Without his continuous support, this thesis would have not been accomplished.

I would also like to thank Associate Prof. Dr. Shuhaimi Mustafa (Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology) for his detailed comments and advice on every aspect.

I am deeply grateful to my respectable co-supervisor Dr. Seyed Hamed Mirhosseini (Faculty of Food Science and Technology, Department of Food Technology), who has always spent his valuable time to look into every detail of my results, and given invaluable advice.

My sincere gratitude and respect to my beloved parents, my husband and my son for their countless love, support, patience and understanding during not only this project but also my entire life. I certify that a Thesis Examination Committee has met on 14 December 2011 to conduct the final examination of Leila Nateghi on her thesis entitled " Physicochemical, Textural And Organoleptic Properties Of Reduced Fat Cheddar Cheese" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the doctor of philosophy.

Members of the Thesis Examination Committee were as follows:

Badlishah Sham Baharin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Lai Oi Ming, PhD

Professor Faculty of Biotechnology and Biomolecular Science Universiti Putra Malaysia (Internal Examiner)

Halimatun binti Yaakub, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Alsonso Totosaus Sanchez, PhD

Professor Chemical and Biochemical Engineering Division Food Science Lab Mexico (External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Yazid Abd. Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Shuhaimi bin Mustafa, PhD

Associate Professor Faculty of Biotechnology and molecular Science Universiti Putra Malaysia (Member)

Seyed Hamed Mirhosseini, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

D----

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xxii
LIST OF ABBREVIATIONS	xxiii

CHAPTER

1	INT	RODU	CTION	1				
2	LIT	ERAT	URE REVIEW	5				
	2.1	Chedd	lar Cheese	5				
		2.1.1	Full Fat Cheddar Cheese	5				
		2.1.2	Reduced Fat Cheddar Cheese	6				
		2.1.2.1 Characteristics of Reduced-Fat Cheddar Cheese						
		2.1.3	Improvement of Reduced-Fat Cheddar Cheese	9				
			2.1.3.1 Use of Fat replacers	9				
			2.1.3.2 Use of Special Adjunct Starter Cultures	11				
		2.1.4	Factors Affecting Textural Properties and Organoleptic	12				
			attributes					
			2.1.4.1 Milk	12				
			2.1.4.2 Acidification Method	12				
	2.1.4.3 Cheese Processing Condition							
			2.1.4.4 Ripening Process	14				
			2.1.4.5 Coagulant	14				
			2.1.4.6 Optional Ingredients	14				
	2.1.5 Major Changes in Textural Properties of Cheddar Cheese							
			2.1.5.1 Cheese Making Process	15				
	2.1.5.2 Cheese Proteolysis and Texture Profile Analysis							
			During the Storage Time					
		2.1.6	Texture Profile Analysis (TPA)					
	2.1.7 Major Changes in Organoleptic Attributes of Cheddar Cheese							
			2.1.7.1 Bacteria and Cheese Flavor	27				
			2.1.7.2 Cheddar Cheese Ripening	29				

		2.1.8	Cheddar Cheese Flavor				36	
			2.1.8.1	Component Cheese	Balance The	ory in Flavor of Che	eddar	36
			2.1.8.2	Contribution Cheddar Ch	n of Volatile eese	Compounds in Flav	or of	38
			2.1.8.3	Contribution	n of Water-So	oluble Compounds i	in Flavor	39
		210	Maggura	of Cheddar	Cheese	asa Dinaning and E	lavor	10
		2.1.9	Sensorv	Evaluation	Sintoring Che	ese Ripening and P	lavoi	40
		2.11.10	Sensory	Lituruuron				
3	PHY	YSICOO	CHEMIC	CAL AND	TEXTUR	AL PROPERTI	ES OF	
	RED	DUCED	FAT	CHEDDAR	CHEESE	FORMULATED	WITH	43
	XAN	NTHAN	GUM	AND/OR	SODIUM	CASEINATE A	IS FAT	
	REP	LACEF	RS .					
	3.1	Introdu	iction					43
	3.2	Materia	al and Me	ethods				45
		3.2.1	Materia	lls	lan Chasse			45
		3.2.2 3.2.3	Prepara	chemical Pro	ar Cheese			40 7
		3.2.3	Texture	Profile Anal	vsis			47
		3.2.5	Electro	nic Nose Ana	lysis			48
		3.2.6	Experin	nental Design	and Statistic	al Analysis		49
	3.3	Results	and Dise	cussion				51
		3.3.1	Physico	ochemical Pro	operties			51
		3.3.2	Textura	al Properties				55
			3.3.2.1	Hardness				55
			3.3.2.2	Adhesiver	ness			58
			3.3.2.3	Springines	SS			59
			3.3.2.4	Conesiver	less			60 61
			3326	Chewines	55			61
			3.3.2.7	Yield	5			62
		3.3.3	Electro	nic Nose Ana	alysis			63
	3.4	Conclu	ision					67
4	OP1	IMIZA	TION O	F YIELD A	AND TEXT	URAL PROPERT	TIES OF	60
	KEL XAN	JTHAN	GUM	AND/OR	SODIIM	FORMULATION CASEINATE A	S FAT	08
	REP	LACEF	R	ANDION	SODICIM	CASEMATE	J FAI	
	4.1	Introdu	iction					68
	4.2	Materi	al and Me	ethods				70
		4.2.1	Materi	als				70
		4.2.2	Prepar	ation of Ched	dar Cheeses			70
		4.2.3	Texture	e Profile Anal	ysis			71
		4.2.4	Export	I leid	.			12 72
		4.2.3 126	Statisti	cal and Design	1 Analysis			12 72
		$\frac{1.2.0}{42.7}$	Ontimi	zation and V	alidation Proc	redures		74
	4.3	Results	s and Dise	cussion				74

xiv

C

		4.3.1	Fitting th	ne Factorial Models	74
			4.3.1.1	Hardness	80
			4.3.1.2	Adhesiveness	83
			4.3.1.3	Springiness	84
			4.3.1.4	Cohesiveness	85
			4.3.1.5	Gumminess	85
			4.3.1.6	Chewiness	86
		132	4.3.1./	I lelu	00 88
		4.3.2	Validatio	on of Models	90
	4.4	Conclu	ision		95
=	IN /IT			NOLEPTIC ATTRIBUTE OF DEDUCED FAT	06
5	CHI	EDDAR	G ORGA CHEESE	USING ADJUNCT STARTER CULTURES	90
	5.1	Introdu	ction		96
	5.2	Materia	al and Meth	iods	99
		5. <mark>2.1</mark>	Material		99
		5.2.2	Preparat	ion of Cheddar Cheeses	99
		5.2.3	Chemica	ls	99
		5.2.4	Methods		100
			5.2.4.1	Proximate Analysis	100
			5.2.4.2	Measurement of Carbohydrates	101
			5.2.4.3	Measurement of Organic Acids	102
			5.2.4.4	Measurement of Amino Acids and Free Amino Acids	103
			5.2.4.5	NPN Soluble in Tricholoroacetic Acid (12%)	104
			5.2.4.6	Changes in Cheeses Proteins by using SDS-PAGE	105
			5.2.4.7	Equilibrium Volatile Flavor Compounds Release in Cheese	106
			5.2.4.8	Characterization of Volatile Flavor Compounds	108
			5.2.4.9	Sensory Evaluation	109
	5.3	Experi	mental Des	sign and Statistical Data Analysis	110
		5.3.1	Complet	ely Randomized Design (CRD)	110
		5.3.2	Statistica	al Data Analysis	111
	5.4	Result a	nd Discuss	sion	112
		5.4.1	Proximate	e Analysis	112
		5.4.2	Chemical	Changes in Cheese Composition During Storage	115
			5.4.2.1	PH	115
			5.4.2.2	NPN (Non Protein Nitrogen)	119
			5.4.2.3	SDS- PAGE	123
			5.4.2.4	Carbohydrates	126
			5.4.2.5	Organic Acids	132
			5.4.2.6	Free Amino Acids	148
			5.4.2.7	Total Amino Acids	162
			5.4.2.8	Volatile Headspace Analysis (SPME)	174
		5.4.3	Sensory I	Evaluation	224

	5.4 Conclusions	229				
6	GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE REASERCH	233				
	6.1 General Conclusion	233				
	6.2 Recommendation for Future Research	239				
REFERENCES						
AF	APPENDICES BIODATA OF STUDENT					
BI						
LI	LIST OF PUBLICATIONS					

