UNIVERSITY PUTRA MALAYSIA

POTENTIOSTATIC, CYCLIC VOLTAMMETRIC AND PULSED ELECTRODEPOSITION OF CADMIUM SELENIDE THIN FILMS

NORHIDAYAH AHMAD WAZIR

FS 2010 54
POTENTIOSTATIC, CYCLIC VOLTAMMETRIC AND PULSED ELECTRODEPOSITION OF CADMIUM SELENIDE THIN FILMS

By

NORHIDAYAH AHMAD WAZIR

Thesis Submitted in Fulfillment of the Requirement for the Degree of Master of Science in the Faculty of Science Universiti Putra Malaysia

March 2010
POTENTIOSTATIC, CYCLIC VOLTAMMETRIC AND PULSED ELECTRODEPOSITION OF CADMIUM SELENIDE THIN FILMS

By

NORHIDAYAH AHMAD WAZIR

March 2010

Chairman : Profesor Zulkarnain bin Zainal,
Faculty : Science

Cadmium selenide thin films were electrodeposited on the indium tin oxide (ITO) conducting glass substrate from an electrolyte containing of CdSO$_4$ and SeO$_2$ by potentiostatic (PSD), cyclic voltammeric (CVD) and pulsed electrodeposition (PED) technique. The cyclic voltammetry experiments were also carried out to determine the range of potential for deposition of CdSe through potentiostatic and pulse techniques. Potentiostatic electrodeposition experiments have been carried out at varying deposition potential, deposition time and bath temperature. For CVD the effect of varying the number of cycle, scan rate, and deposition at different bath temperature were studied. While the effect of different pulse potential and duty cycles were investigated for PED.

X-ray diffraction confirmed that polycrystalline CdSe of hexagonal structure was formed on the ITO substrate for PSD technique, while for CVD and PED technique, mixture of hexagonal and cubic CdSe phase were observed. The films exhibited n-type
semiconducting behavior for PSD but p-type for CVD. Heating the sample prepared by CVD at 550°C, removes unwanted selenium element, enhanced the morphology of the film and changed the semiconducting behavior from p-type to n-type. More interesting, as deposited PED films showed both n-type and p-type behavior based on their response to the light illumination. SEM micrograph confirmed the polycrystalline nature of all deposits. In these three techniques, the photoactivity, composition, grain size and shape of the film were found to be dependent on the electrodeposition condition.

CdSe thin film was successfully obtained from the mixture of 0.06 M CdSO₄ and 0.005 M of SeO₂ solution at potential -0.68V vs Ag/AgCl for preparation through PSD. Thicker films were formed at prolong deposition time. The PSD of CdSe was most suitable to be carried out at room temperature. Lower number of cycle and scan rate are preferable for CVD, with potential range between -1.0V to 1.0V. Smooth and well adherent samples were obtained. CVD technique produces selenium rich sample. But the excess of selenium could be eliminated by calcination at 550°C. PED produces smooth and compact films at -0.8V with 50% duty cycles. Among these three techniques, potentiostatic was found to be able to produce nearly stoichiometric of CdSe thin films. The optical absorption studies revealed that all films have direct optical band gap energy values, E_g, in the range of 1.7 to 2.0 eV.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperuan untuk ijazah Master Sains.

ELEKTROENAPAN POTENSIOSTATIK FILM NIPIS CADMIUM SELENIDE MELALUI TEKNIK VOLTAMMETRI KITARAN DAN DENYUTAN

Oleh

NORHIDAYAH AHMAD WAZIR

Mac 2010

Pengerusi : Profesor Zulkarnain bin Zainal, PhD

Fakulti : Sains

Kadmium selenida telah dielektroenapkan di atas kepingan indium tin oxide (ITO) daripada larutan elektrolit yang mengandungi CdSO$_4$ and SeO$_2$ melalui teknik enapan potensiostatik (PSD), enapan voltammetrik kitaran (CVD) dan enapan denyutan (PED).

Eksperimen siklik voltammetri dibuat untuk menentukan julat keupayaan untuk pengelektroenapkan CdSe melalui kaedah potensiostatik (PSD) dan enapan denyutan (PED). Kesaran perubahan beberapa parameter telah dikaji semasa eksperimen (PSD) iaitu keupayaan pengenapan, jangka masa pengenapan, dan suhu elecktrolit. Bagi elektroenapan CVD, kesan mengubah bilangan kitaran, kadar imbasan dan suhu elektrolit yang berbeza dikaji. Sementara itu, kesan magnitud keupayaan denyutan, kitaran kerja tempoh denyutan dan kesan suhu elektrolit yang berbeza juga dikaji.

CdSe telah dienapkan daripada larutan 0.06M CdSO₄ an 5mM of SeO₂ pada keupayaan -0.68V terhadap Ag/AgCl bagi penyediaan melalui kaedah PSD. Filem yang lebih tebal diperoleh apabila masa elektroenapan dipanjangkan. Bagaimanapun, bagi teknik ini, penyediaan filem lebih sesuai dijalankan pada suhu bilik. Bilangan kitaran dan kadar imbasan yang rendah lebih sesuai untuk mengenapkan CdSe melalui CVD. Teknik ini menghasilkan sampel yang kaya selenium. Walaubagaimanapun, selenium boleh disingkirkan melalui pemanasan filem nipis pada suhu 550ºC. Teknik PED menghasilkan filem yang rata dan padat pada keupayaan -0.80 V dengan 50% kitar kerja. Elektroenapan CdSe dengan kaedah ini juga lebih sesuai dilakukan pada suhu bilik.
Diantara ketiga-tiga teknik ini, PSD didapati boleh menghasilkan filem yang hampir stoikiometri. Serapan optikal menunjukkan semua filem yang diperoleh memiliki luang tenaga bagi peralihan terus dalam lingkungan 1.70 to 2.10 eV.
ACKNOWLEDGEMENTS

Allhamdullillah, Praise be to Allah.

First of all, I would like to express my sincere appreciation and utmost gratitude to the chairman of the M. Sc. Project, Professor Dr. Zulkarnain Zainal for his continuous assistance, guidance and motivation. Without which this project might not have come to completion. I like to also acknowledge the help and guidance of my co-supervisors, Associate professor Dr. Tan Wee Tee.

Also worthy of acknowledgement, are the staff of department of chemistry (UPM) and Bioscience, En Raffi and Pn Ida for their kind cooperation. Many thanks also go to my laboratory mate who helped me a lot and being nice to me especially Teo Seok Liang, Koo Chee Siong, Chang Sook Keng, Alvin Chong Jin Kai and Mohd Fairul Sharin.

Among others who deserve of this acknowledgement are my respected and beloved parents En Ahmad Wazir and Pn Zuyah, my siblings and to the special person, Mohd Misrul who had been worried and gave a constant push when I had oftentimes giving up, I also wish to thank to my superiors in Petronas Research Sdn Bhd (PRSB), En Makhzan Selamat, En Ismail Yusoff, En Mustaffa Abdullah, and not to forget, Puan Noor Azlenawati who had given me chance to write up this thesis in office, during working hours for one month. They really deserved this high appreciation.
Finally, it is a must for me to express thanks to financial support of this research and PASCA scholarship. I also must thank all the kind help of the staff at School of Graduate Studies (SGS) Universiti Putra Malaysia. It is the help of you people that makes graduating possible.
I certify that a Thesis Examination Committee has met on ____________ to conduct the final examination of Norhidayah Ahmad Wazir on her Master of Science thesis entitled “Potentiostatic, Cyclic Voltammetric and Pulsed Electrodeposition of CdSe Thin Films” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master degree.

Members of the Thesis Examination Committee are as follows:

Faculty of Science
Universiti Putra Malaysia
(Chairman)

Professor,
Faculty of Science,
Universiti Putra Malaysia
(Member)

Associate Professor,
Faculty of Science,
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Zulkarnain Zainal,
Professor,
Faculty of Science,
Universiti Putra Malaysia
(Chairman)

Tan Wee Tee,
Associate Professor,
Faculty of Science,
Universiti Putra Malaysia
(Member)

__

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 July 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

NORHIDAYAH AHMAD WAZIR

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xv</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

- Semiconductor
 - Band Model of Solids
 - Band Model of Semiconductor
 - Intrinsic and Extrinsic Semiconductor
 - Transition Type
 - Semiconductor Photoelectrochemical Cells.
- Thin Films Semiconductor
 - Methods of Thin Film Preparation
 - Electrodeposition
 - Potentiostatic Deposition
 - Cyclic Voltammetric Deposition
 - Pulse Deposition
- Cdse Thin Films
 - Previous Works on Cdse Thin Films.

xii
3 MATERIALS AND METHOD

Instrumentation and process 26
 Working Electrode 26
 Reference Electrode 27
 Counter Electrode 27

Composition and pH of precursor solution 27
Cyclic Voltammetry experiment 29
Electrodeposition of Cadmium Selenide Thin Films 30
Potentiostatic deposition 31
 Deposition Potential 31
 Deposition Times 31
 Bath Temperature 31
Cyclic voltammetric deposition 32
 Number of Cycles 32
 Scan rate 32
 Bath temperature 32
 Annealing temperature 33
Pulsed Deposition 33
Pulse deposition potential 33
Varying Duty Cycles at different ON time and OFF time 34
Characterization of Deposits 35
X-Ray Diffractometry(XRD) 35
Photoactivity test(PEC) 35
Scanning Electron Microscopy(SEM) 37
Electron Dispersive analysis of X-Ray (EDAX) 37
Optical Absorption study 38

4 RESULTS AND DISCUSSION

Cyclic Voltammetry 40
Potentiostatic deposition 45
 Effect of Deposition Potential 45
 Effect of Deposition Times 58
 Effect of Bath Temperature 70
Cyclic voltammetric deposition 80
 Effect of Number of Cycles
 Effect of Scan rate
 Effect of Bath temperature
 Effect of Annealing temperature
Pulsed Deposition 122
 Effect Pulse deposition potential 122
 Effect of Different Duty Cycle by Varying OFF time 133
 Effect of Different Duty Cycle by Varying ON time 146
5 CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 161

BIBLIOGRAPHY 166

BIODATA OF STUDENT 173