

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A MOBILE ROAD TRAFFIC INFRACTION REGISTRATION SYSTEM

HABIBOLLAH ARASTEH RAD

DEVELOPMENT OF A MOBILE ROAD TRAFFIC INFRACTION REGISTRATION SYSTEM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

DEDICATION

To my parents, wife, son and my brother

Abstract of thesis presented to the Senate of the Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master.

DEVELOPMENT OF A MOBILE ROAD TRAFFIC INFRACTION REGISTRATION SYSTEM

Ву

HABIBOLLAH ARASTEH RAD

July 2010

Chairman: Khairulmizam Samsudin, PhD

Faculty: Engineering

The rapid development of roads and the increasing number of vehicles has complicated the road traffic enforcement due to limited resources of the traffic police especially when traffic infraction registration is done manually in many countries. In an effort to improve the efficiency of Iranian traffic police, a computer-based method for mobile road traffic infraction registration is proposed.

The study attempts to obtain results that the Iranian traffic police can make decisions base on them to migrate from manual-method towards computer-based method. In order to capture data in this study, questionnaire and interview were used. The system prototype has been developed based on the requirement of Iranian traffic police. The study then concentrates on the Traffic Police Data Center and evaluates the system performance. To facilitate of the decision, the server (i.e. Traffic Police Data Center) and the clients (i.e. police officers) are collectively modeled as an open queuing network. The details of statistical analysis were conducted to obtain the mean server arrival rate (λ) of model with respect to real historical data. We concluded the process forms as Non-Homogeneous Poisson Processes. Several analysis techniques were also utilized to assure the accuracy of the estimation. The mean service rate was measured by a specially developed benchmark tool. The tool was configured to imitate several

scenarios based on Iranian traffic infraction registration in 2007, and statistics were gathered.

The study has used computer simulation as an effective way to solve the queuing problem and evaluating the performance of the system. Therefore, we obtain closed form expressions for the performance metrics with respect to various arrival rates. The simulation results show that the system is reliable even for more than triple amount of the real load. The system resource is also monitored for various performance tests. The server resources are stable at the expected level even under critical loads. Finally, the study has shown that the mobile method has made possible the electronic submission of ticket data, which will result in cost savings for traffic police.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PEMBANGUNAN SISTEM PENDAFTARAN PELANGGARAN JALAN RAYA BAGI TRAFIK BERGERAK

Oleh

HABIBOLLAH ARASTEH RAD

July 2010

Pengerusi: Khairulmizam Samsudin, PhD

Fakulti: Kejuruteraan

Beberapa tahun kebelakangan ini pertambahan jalan raya dan kenderaan meningkatkan komplikasi penguatkuasaan jalan raya disebabkan oleh sumber polis trafik yang terbatas. Keadaan ini menjadi lebih sukar kerana sistem pendaftaran kesalahan jalan raya masih dilakukan secara manual. Dalam usaha untuk meningkatkan kecekapan polis trafik Iran, kaedah yang berasaskan komputer bergerak bagi pendaftaran kesalahan trafik dicadangkan.

Kajian ini cuba mendapatkan panduan bagi membolehkan polis trafik Iran menukar cara manual kepada kaedah berasaskan komputer. Sehubung dengan itu satu soal selidik dan temuduga dijalankan bagi mendapatkan data kajian. Sistem prototaip telah dibangunkan berdasarkan kepada keperluan polis trafik Iran. Oleh itu kajian ini tertumpu kepada Pusat Data Polis Trafik dan dinilai prestasinya. Bagi membuat keputusan, pelayan (misalnya Pusat Data Polis Trafik) dan klien (misalnya: pegawai polis) dimodel secara kolektif sebagai 'open queing network'. Perincian analisis statistik dikendalikan untuk mendapat 'mean server arrival rate' (λ) daripada data terdahulu. Kami membuat kesimpulan bahawa proses tersebut mempunyai ciri 'Non-Homogenous Poisson'. Berbagai teknik analisis juga digunakan untuk memastikan

ketepatan anggaran. Min kadar perkhidmatan diukur menggunakan alat penanda aras yang telah dibangunkan secara khusus. Alat tersebut telah di atursemula untuk berbagai-bagai senario berdasarkan sistem pendaftaran kesalahan trafik di Iran dalam tahun 2007, hasil statistiknya dikumpulkan.

Kajian ini telah menggunakan simulasi komputer sebagai satu cara yang efektif untuk menangani masalah 'queueing' dan menilai pelaksanaan sistem. Oleh itu kami memperolehi formula 'closed form' berdasarkan berbagai 'arrival rate'. Keputusan simulasi menunjukkan kebolehpercayaan sistem ini walaupun dibebankan lebih daripada tiga kali ganda jumlah beban sebenar. Sumber sistem ini juga diperhatikan dengan menggunakan berbagai ujian pencapaian. Sumber 'server' adalah stabil pada tahap jangkaan walaupun pada bebanan kritikal. Akhirnya kajian ini menunjukkan penghantaran data saman secara eletronik adalah tidak mustahil dan menjimatkan kos polis trafik.

ACKNOWLEDGMENT

In the name of Allah, the Most Beneficent, the Most Merciful

I am very grateful to Allah for giving me this opportunity to pursue my further studies. I am deeply indebted to my supervisor, Dr. Khairulmizam Samsudin, for his direction and guidance for this thesis, for the many interesting discussions we had. I greatly benefit from his detailed comments and insights that help me clarify my ideas and present the materials in a suitable way. One thing I learnt from him is to be focused and knowing what I am doing.

To my co-supervisor Associate Prof. Dr. Rahman Ramli, I will like to acknowledge and express my appreciation for his guidance. He gave me the impetus to work extra hard.

Mum and dad what can I say? Golamreaza Arasteh Rad and Shahla Arasteh (Thank you very much. May God bless you abundantly). To my wife and son, Leyal Ebadi and Ali, thanks for their patience and unfailing love during my studies, they sacrificed their nights and weekends so that I could work and for always listening to my problems. I would like to express my heartfelt appreciation to my brother, Dr. Mohammad Esmail Arasteh Rad, for mathematics suggestions and guidelines. He was a constant source of mathematics.

Finally I would want to thank my friends, Mohammad Ali Tavallaee and Mohamad Bagher Tehrani, master students at Universisti Tehran and Universiti Putra Malaysia, who working on police assistance project. They provided a continuous help for my research.

I certify that a Thesis Examination Committee has met on July 2010 to conduct the final examination of Habibollah Arasteh Rad on his thesis entitled "Development Of A Mobile Road Traffic Infraction Registration System" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

BUJANG KIM HUAT, Ph.D.

Professor
Department of Civil Engineering
Universiti Putra Malaysia
(Chairman)

M. IQBAL SARIPAN, Ph.D.

Senior lecturer
Department of Computer and Communication System Engineering
Universiti Putra Malaysia
(Member)

Md. NASIR SULAIMAN, Ph.D.

Associate Prof.
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

PUTRA SUMARI, Ph.D.

Associate Prof.
School of Computer Sciences
Universiti Sains Malaysia
(Member)

BUJANG KIM HUAT, Ph.D.

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the Master of Science. The members of the Supervisory Committee were as follows:

Khairulmizam Samsudin, PhD

Senior lecturer
Department of Computer and Communication System Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abd Rahman Ramli, PhD

Associate Professor

Department of Computer and Communication System Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

HABIBOLLAH ARASTEH RAD

Date:

TABLE OF CONTENTS

				Pag
DEDICA'	TION			ii
ABSTRA				iii
ABSTRA	K			v
ACKNOV	WLEDG	MENT		vii
APPROV	AL			viii
DECLAR	RATION			х
LIST OF	TABLE	ES		xiv
LIST OF	FIGUR	ES		xv
LIST OF	ABBRI	EVIATI	ONS	xviii
СНАРТЕ	.R			1
OIM II	724			: #:
1	INTRODUCTION			
	1.1	E-gove	ernment in Iran	4
	1.2	Growth	of Mobile and Electronic Services in Iran	5
	1.3	Proble	m Statement	5
	1.4	The Si	gnificance of the Study	8
	1.5	Object	ives	8
	1.6	Scope	of Work	9
	1.7	Thesis	Organization	10
_				
2			RE REVIEW	11
	2.1	Introdu		11
	2.2		Craffic Definitions	12
	2.3		Traffic Control	12
		2.3.1	Detection and Registration of Traffic Infraction by Officers	13
		2.3.2	Automatic Detection And Registration Systems	14
	2.4	Case S	Same Same Same Same Same Same Same Same	14
	4.4	2.4.1		14
		2,4.1		15
		2.4.3	United States of America	16
			CILICA DIMICO VI I IIIVIIVA	10

		2.4.4 Abu Dhabi	18				
	2.5	System Development	19				
		2.5.1 Requirement Analysis	19				
		2.5.2 System Design	20				
		2.5.3 Software Development	22				
	2.6	Mobile Computing	23				
		2.6.1 Mobile Networks	23				
		2.6.2 Types of Mobile Devices	26				
		2.6.3 Multi-Tier Architecture	27				
		2.6.4 Enabling Technologies Overview	29				
	2.7	Modeling	31				
		2.7.1 Queueing Model	32				
		2.7.2 Arrival Data Analysis	34				
		2.7.3 Service Rate	40				
	2.8	System Simulation	42				
	2.9	Benchmarking	44				
		2.9.1 Performance Test Tools	45				
		2.9.2 Evaluation Tests	47				
3	ME'	METHODOLOGY					
	3.1	Introduction	48				
	3.2	System Architecture	49				
		3.2.1 Road Traffic Infraction Registration System					
		Infrastructure	51				
	3.3		56				
		3.3.1 Database Design	57				
		3.3.2 Traffic Police Scenario	58				
		3.3.3 Software Design	59				
	3.4	System Performance Evaluation	63				
		3.4.1 User Acceptance	63				
		3.4.2 System Simulation	63				
	3.5	Resource Monitoring	78				
		3.5.1 Infraction Registration Benchmark Tool (IRBT)	78				
		3.5.2 Resources Monitoring	80				
	3.6	Testbed	80				
4	RES	SULTS AND DISCUSSION	82				
	4.1	Introduction	82				
	4.2	System Development	82				
		4.2.1 Users Acceptance Results	84				
	4.3	Queueing Model Parameters					
		4.3.1 Arrival Rate	85				
		4.3.2 The System Service Rate	102				
	4.4						
	4.5	Simulation Results					
	4.6	Resource Monitoring Results					
	4.7	8-7					

5	C	CONCLUSION AND FUTURE WORKS				
	5.1	Conclusion	117			
	5.2	2 Future Research	121			
	RI	REFERENCES				
	AI	PPENDICES	135			
	Α	Sample Original Traffic Ticket in Persian	135			
	В	Development of the System	136			
	C	User Acceptance	138			
	D	Questionnaire (translated form) - 01	141			
	Е	Questionnaire (translated form) - 02	143			
	F	Experiments and Questionnaire (translated form)-03	146			
	G	Estimation by linear method	149			
	Н	Estimation using surface	152			
	- 1	Overload Probability Analysis	153			
	J	Cost Estimation of Current and Proposed Method	155			
	T T	COT OF DURY ICATIONS	150			