UNIVERSITI PUTRA MALAYSIA

WEAK NECK PROBLEM IN MUSA SP. CV. RASTALI POPULATIONS IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY

EKA TARWACA SUSILA PUTRA

FP 2011 34
WEAK NECK PROBLEM IN MUSA SP. CV. RASTALI POPULATIONS IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY

EKA TARWACA SUSILA PUTRA

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2011
WEAK NECK PROBLEM IN *MUSA* SP. CV. RASTALI POPULATIONS IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY

BY
EKA TARWACA SUSILA PUTRA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2011
DEDICATION

I would like to dedicate my thesis to:

My beloved parents,

Sapardi
Marsih

For giving me do’a, support, sacrifices and encouragement and

My dearest wife and sons,

Atin
Khadafi
Ilham

for their do’a, motivation, inspiration and love
WEAK NECK PROBLEM IN *Musa* SP. CV. RASTALI POPULATIONS IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY

By

EKA TARWACA SUSILA PUTRA

April 2011

Chairman : Assoc. Prof. Zakaria bin Wahab, PhD

Faculty : Agriculture

Weak neck is the most significant physiological damage in *Musa* sp. cv. Rastali accessions. It has the ability to reduce fruit quality and selling value. A holistic approach is needed to solve the weak neck problem. The objectives of the research were: (1) to determine the genetic diversity of the Rastali population based on morphological and molecular markers, (2) to identify the specific allele that is associated with weak neck in the Rastali populations in comparison to other cultivars, and (3) to elucidate the relationship between fertilizer recommendation containing Mg, B and Si and the weak neck problem of the Rastali population.

A total of 78 accessions of Rastali (74 accessions of Rastali from Peninsular Malaysia and 4 accessions from Central Java, Indonesia), and six different cultivars with no occurrence of weak neck were selected for comparison. Out of these, only 29 accessions were able to be morphologically characterized because many of them were without reproductive organ. A total of eight qualitative
reproductive descriptors were used in this experiment. These 78 accessions were used for the molecular study. Genomic DNA were extracted from leaf samples using GeneAll® Plant DNA extraction kit and quantified using a spectrophotometer. Polymerase chain reaction (PCR) was performed in a total volume of 15µL. A total of 10 SSR primer pairs were used in this study. Meanwhile, forward primers were labelled with FAM fluorescent label. The detection of the DNA fragments was made on ABI Prism® 310 automated sequencer and the allele sizes were also obtained.

The field experiment was done at Universiti Putra Malaysia under field conditions arranged in split-split plot design with five blocks. The main factor was NPK fertilizer which was recommended by Department of Agriculture Malaysia (DOA) and United Plantation Berhad (UPB). The sub-factors were applications and non-application (as control) of kieserite (Magnesium), boric acid (Boron) and sodium silicate (Silicon). The sub-sub factors were the Musa sp. cv. Rastali accessions, consisting of four groups, which were chosen for their different morphological characters. In particular, the Musa sp. cv. Berangan accession was selected as the control treatment.

The findings showed that there is genetic diversity among Rastali accessions. Two male reproductive morphological descriptors (namely, male neuter flower along the rachis and male bud shape) were found to be the most important morphological characters which have caused the variation among the Rastali accessions. Existence of variations among Rastali was further supported by
genetic analysis using 10 SSR markers. The SSRs markers were able to separate the accessions of Rastali. A significant 39% of genetic diversity was found among 78 accessions of Rastali. Out of the 78 Rastali accessions, eight were excluded from the main cluster, and showed higher heterogeneity compared to those in the main group (the coefficients of similarity ranging from 0.13 to 0.24). In the selection of the overall allele at each Rastali accession, one allele with the size of 238 bp, was found to be always present in all the accessions of Rastali, but was absent in the other six cultivars. This allele was located at locus A-25 and was considered the most common allele. Meanwhile, the allele which was located on locus A-13 and with the size of 277bp was only found in the other six cultivars but absent in all the Rastali accessions. The findings also showed that combined application of magnesium, boron and silicon could improve the Mg, B and Si contents in the leaves and fruit of the Rastali accessions and Berangan, in combination with the NPK fertilizer doses from DOA or UPB. These conditions increased the stomatal length and width and physiological activities of the Rastali accessions and Berangan at low level of NPK fertilizer (UPB), in combination with Mg, B and Si applications. In particular, the fingers of the R08 (in combination with the NPK fertilizer doses from UPB) and R62 (in combination with the NPK fertilizer doses from DOA) which had received Mg, B and Si were found to be lighter and smaller than those without any Mg, B and Si applications. Meanwhile, the bunches of the R08, R62 and Berangan which had received Mg, B and Si were found to be lighter and smaller than those without any Mg, B and Si applications, in combination with the
NPK fertilizer doses from DOA. These characters have been shown to have the potential in reducing the intensity of the weak neck problem in the Rastali accessions, especially for the R08 and R62.

Although the applications of magnesium, boron and silicon enhanced stomatal length and width and physiological activities of the Rastali accessions and Berangan at low level of NPK fertilizer (UPB), they decreased polygalacturonase (PG) and pectinmethylesterase (PME) activities in the Rastali accessions, except the PG on Day 4 after harvesting for the R08 and R62. Nevertheless, the PG and PME activities in Rastali were still higher compared to those of Berangan. The applications of Mg, B and Si also increased the lignin and cellulose content in the fruit neck zone of the R34 (in combination with the NPK fertilizer doses from DOA) and R08 (in combination with the NPK fertilizer doses from UPB). The decline in the PG and PME activities, as well as the increase in the lignin and cellulose content in the R08 (in combination with the NPK fertilizer doses from UPB) and R34 (in combination with the NPK fertilizer doses from DOA) which had received Mg, B and Si were able to increase the relative thickness of the cell walls during fruit growth. Application of Mg, B and Si resulted in small-sized cell but relatively thicker cell wall. Meanwhile, the applications of Mg, B and Si decreased the ethylene activity in the R08 (in combination with the NPK fertilizer doses from DOA or UPB), R34 and R12 (in combination with the NPK fertilizer doses from UPB).
The decrease in ethylene, PG and PME activities delayed the accumulation of soluble soilids content (SSC) in the R08 (in combination with the NPK fertilizer doses from DOA) and chlorophyll degradation in the R12, which had obtained Mg, B and Si. The slowing down of chlorophyll degradation and the lowering of SSC resulted in maintained finger firmness of the fruit at a high level. Thus, the fruit has been found to remain strong and hard, especially in the abscission layer, although it has been ripened. The R08 and R12 which had obtained Mg, B and Si were able to produce fruit with stronger abscission layer (higher firmness), in combination with the NPK fertilizer doses from DOA. The stronger abscission layer is not easy to crack and it is also not prone to weak neck. Therefore, the applications of Mg, B and Si in combination with the NPK fertilizer doses from DOA have the potential to reduce the weak neck intensity in the R08, although totally eliminating the weak neck problem as in Berangan has yet to be achieved.

Based on the data, it can therefore be concluded that (1) Rastali cultivar has weak neck problem, (2) there are early indications that the 238bp and 277bp alleles have the possibilities to be associated with weak neck, and (3) the combined applications of Mg, B and Si was able to reduce the weak neck intensity from 80.00% to 24.33% in the Rastali accessions and Berangan, in combination with the NPK fertilizer doses from DOA.
Abstrak Tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KEPERLUAN MAGNESIUM, BORON DAN SILIKON DAN HUBUNGANNYA DALAM MASALAH LERAI BUAH PADA POPULASI MUSA SP. CV. RASTALI

Oleh
EKA TARWACA SUSILA PUTRA

April 2011

Pengerusi : Prof. Madya Zakaria bin Wahab, PhD
Fakulti : Pertanian

Lerai buah merupakan kerosakan fisiologi yang paling banyak didapati pada Musa sp. cv. Rastali. Ia mampu mengurangkan kualiti dan harga pasaran buah. Pendekatan holistik diperlukan dalam menyelesaikan masalah lerai buah. Objektif kajian ini adalah untuk: (1) menentukan kepelbagaian genetik populasi Rastali berdasarkan morfologi dan penanda molekul (2) mengenalpasti alel khusus yang terdapat pada populasi Rastali berbanding kultivar yang lain dan (3) menentukan hubungan di antara baja yang disyorkan yang mengandungi magnesium (Mg), boron (B), dan silikon (Si) terhadap lerai buah pada populasi Rastali.

Sejumlah 78 aksesi Rastali (74 aksesi Rastali dari Semenanjung Malaysia dan 4 aksesi dari Jawa Tengah, Indonesia) dan enam kultivar berbeza yang tidak mempunyai lerai buah dipilih untuk perbandingan. Daripada jumlah ini, hanya 29 aksesi sahaja yang dapat dicirikan morfologinya kerana ketiadaan organ

Kajian lapangan telah dijalankan di Universiti Putra Malaysia, yang mana ia disusun dalam plot yang dipisah-pisahkan dengan lima blok. Faktor utama adalah baja NPK, iaitu yang disyorkan oleh Jabatan Pertanian Malaysia (DOA) dan United Plantation Berhad (UPB). Faktor-faktor sampingan adalah diaplikasikan dan tidak diaplikasikan (sebagai pengawal) kieserite (Mg), asid borik (B) dan natrium silikat (Si). Faktor sampingan-sampingan bagi akses Rastali, mengandungi empat kumpulan yang dipilih untuk ciri-ciri morfologi yang berbeza. *Musa* sp. cv. Berangan dipilih sebagai rawatan kawalan.

Hasil kajian menunjukkan terdapat kepelbagaian genetik pada akses Rastali. Dua morfologi reproduktif jantan (iaitu bunga jantan mandul sepanjang rakis dan bentuk kudup jantan) merupakan ciri morfologi yang paling penting yang menyebabkan kepelbagaian di antara akses Rastali. Perbezaan yang wujud di antara Rastali kemudian disokong oleh analisis genetik menggunakan 10 penanda SSR mampu mengasingkan akses Rastali. Kepelbagaian genetik yang signifikan
dijumpai di antara 78 akses Rastali. Daripada 78 akses Rastali, 8 akses terkeluar daripada kumpulan utama dan menunjukkan heterogeniti yang tinggi berbanding yang terdapat di kumpulan utama (skala persamaan koefisien bermula 0.13 hingga 0.24). Keputusan ini juga menunjukkan bahawa dalam pemilihan daripada keseluruhan akses Rastali, satu alel yang bersaiz 238bp ditemui sentiasa ada dalam keseluruhan akses Rastali, tetapi tiada dalam enam kultivar yang lain. Alel ini berada pada lokus A-25 dan boleh dipertimbangkan sebagai alel yang paling biasa. Sementara itu, alel yang bersaiz 277 bp yang berada pada lokus A-13, hanya ditemui pada enam kultivar yang lain tetapi tiada pada semua akses Rastali.

Hasil penyelidikan ini juga menunjukkan gabungan aplikasi Mg, B dan Si dapat meningkatkan kandungan Mg, B dan Si di dalam daun dan buah pada akses Rastali dan Berangan, dengan kombinasi baja NPK dos daripada DOA dan UPB. Keadaan ini meningkatkan panjang dan lebar stomata dan aktiviti fisiologi akses Rastali dan Berangan pada tahap rendah baja NPK (UPB), dengan kombinasi aplikasi Mg, B dan Si. Secara khusus, buah R08 (dalam kombinasi dengan baja NPK dos dari UPB) dan R62 (dalam kombinasi dengan baja NPK dos dari DOA) yang telah menerima Mg, B dan Si didapat lebih ringan dan lebih kecil berbanding dengan yang tidak diaplikasikan dengan Mg, B, and Si. Sementara itu, tandan bagi R08, R62 dan Berangan yang telah mendapat Mg, B dan Si didapat ringan dan kecil berbanding dengan yang tidak diaplikasikan dengan Mg, B and Si, dengan kombinasi baja NPK dos daripada DOA. Ciri ini mempunyai
potensi untuk mengurangkan intensiti masalah lerai buah pada aksesi Rastali, terutamanya untuk R08 dan R62.

Walaupun aplikasi Mg, B dan Si dapat meningkatkan panjang dan lebar stomata serta aktiviti fisiologi pada aksesi Rastali dan Berangan pada kadar rendah baja NPK (UPB), ia akan mengurangkan aktiviti poligalakturonase (PG) dan pectinmethylesterase (PME) dalam aksesi Rastali, kecuali PG pada hari ke 4 selepas dituai untuk R08 dan R62. Bagaimanapun, aktiviti PG dan PME dalam Rastali masih lebih tinggi berbanding dengan Berangan. Aplikasi Mg, B, dan Si juga dapat meningkatkan kandungan lignin dan selulosa di zon leher buah R34 (dalam kombinasi dengan baja NPK dos daripada DOA) dan R08 (dalam kombinasi dengan baja NPK dos daripada UPB). Penurunan aktiviti PG dan PME, serta peningkatan lignin dan selulosa dalam R08 (dalam kombinasi dengan baja NPK dos daripada UPB) dan R34 (dalam kombinasi dengan baja NPK dos daripada DOA) yang menerima Mg, B dan Si mampu meningkatkan ketebalan relatif dinding sel semasa pertumbuhan buah. Aplikasi Mg, B dan Si menghasilkan saiz sel yang kecil tetapi dinding sel yang lebih menebal.

Sementara itu, aplikasi Mg, B dan Si menurunkan aktiviti etilena pada R08 (dalam kombinasi dengan baja NPK dos daripada DOA atau UPB), R34 dan R12 (dalam kombinasi dengan baja NPK dos daripada UPB).

Penurunan aktiviti etilena, PG dan PME akan menangguhkan pengumpulan kandungan pepejal boleh larut (SSC) pada R08 (dalam kombinasi dengan baja NPK dos daripada DOA) dan degradasi klorofil pada R12, yang telah menerima
Mg, B dan Si. Perlambatan degradasi klorofil dan penurunan SSC akan mengekalkan ketegasan buah pada peringkat tinggi. Oleh itu, buah akan didapati tetap kuat dan keras, terutamanya pada lapisan luruhan, walaupun buah telah masak. R08 dan R12 yang mendapat Mg, B dan Si mampu menghasilkan buah dengan lapisan luruhan yang lebihkuat (ketegasan lebih tinggi), dalam kombinasi dengan baja NPK dos daripada DOA. Lapisan luruhan yang kuat tidak mudah retak dan tidak mudah terdedah kepada lerai buah. Oleh sebab itu, aplikasi Mg, B dan Si dengan kombinasi baja NPK dos daripada DOA mempunyai potensi untuk menurunkan intensiti lerai buah pada R08, walaupun secara keseluruhannya penyelesaian masalah lerai buah seperti pada Berangan masih belum dapat dicapai.

Berdasarkan data tersebut, dapatlah disimpulkan bahawa (1) kultivar Rastali mempunyai masalah lerai buah, (2) terdapat penunjuk awal bahawa alel 238bp dan 277bp berkemungkinan berkaitan kepada masalah lerai buah, (3) kombinasi aplikasi Mg, B dan Si mampu mengurangkan intensiti masalah lerai buah dari 80.00% kepada 24.33% pada aksesi Rastali dan Berangan, dalam kombinasi dengan baja NPK dos daripada DOA.
ACKNOWLEDGEMENTS

Bismillahi Allahu Akbar and Alhamdulillahirabbil’alamin, All praise to Allah S.W.T. whose countless blessing enabled me to accomplish this study. My sholawat and salam is addressed to His righteous messenger, prophet Muhammad S.A.W.

First of all I would like to express my most sincere gratitude to Assoc. Prof. Dr. Zakaria Wahab for his suggestions, important advice, unflagging interest, concerns, inspiration and encouragement during the period of this study. His broad knowledge and logical way of thinking have been of great value to me. His understanding, assistance, encouragement and guidance have provided a good basis for my thesis. I gratefully acknowledge my indebtedness to my supervisory committee members, Prof. Dr. Ghizan Saleh and Dr. Nur Ashikin Psyquay Abdullah, who provide many valuable comments and suggestions, which significantly improved the thesis.

I take this opportunity to express my thanks to all the farmers in Peninsular Malaysia and Central Java, Indonesia for permission given to collect the samples from their fields. The appreciation is also due to the Faculty of Agriculture, Universitas Gadjah Mada for its approval to pursue my PhD program at Faculty of Agriculture, Universiti Putra Malaysia. I owe my sincere gratitude to Prof. Dr. Didik Indradewa and Dr. Endang Sulistyaningsih for giving me support and motivation during my study. Special thanks are due to my mentors Mr. Priyono
Suryanto (PhD candidate) and Mr. Abdul Rohman (PhD candidate), for giving me constant encouragement, motivation, inspiration and support. I would like to thank Dr Sri Rahayu and Dr. Tata Wijayanta, who teach me the hard life. Special thanks to Dr. Usman Jakfar and ikhwahfillah for their support and kindness.

My keen appreciation goes to Tuan Haji Mohd Shahril Ab. Rahman for his valuable assistance in the field. Sincere thanks are extended to Encik Daud Mustam and Tuan Haji Suhaimiti Aman for their assistance and kindness to allow me to use the SEM in their laboratory. A special thank to Encik Mazlan Bangi for his assistance and kindness to allow me to use Photosynthetic Analyzer, Porometer and SPAD 502. Not to forget Tuan Haji Mohd Khairi Kandar and Encik Yusoff Suki for their assistance to determine the nutrient content using AAS and AA in their laboratory. Sincere thanks to Encik Shamsudin Bojang for his kindness to allow me to use the CPD in his laboratory. I would like to thank Puan Salmi Yaacob, Puan Salmah Kassim and Encik Mohd Helmi Hamisan, for providing chemicals, valuable information and assistance during my laboratory work. I would like to thank my special friends, Rahmatollah Behmaram, Ali Rajbarfard, Mahmood Reza, Majid Faroughi, Alireza Biabani, Zahra Nouri, Elnaz, Nahid Babaei and Pedram Kashiani. They gave me friendship and provide useful discussions to improve my thesis.

I would like to express my profound appreciation to my parents, Sapardi and Marsih, for their do’a, support, sacrifices and encouragement. I would also like to express my grateful appreciation to my father and mother-in-law, Sugiran and
Sukemi, for their do’a and support. Last but not least, I would like to thank to my beloved wife, Suprihatin Wijayanti, S.P., and my little heroes, Muammar Iqbal Khadafi Tarwaca and Muammar Ilham Hanafi Tarwaca for their sacrifices, patience and moral support that enable me to successfully carry out the PhD study.
I certify that a Thesis Examination Committee has met on 27 April 2011 to conduct the final examination of Eka Tarwaca Susila Putra on his thesis entitled "Weak Neck Problem in Musa Sp. Cv. Rastali Populations in Relation to Magnesium, Boron and Silicon Availability" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Ridzwan bin Abd Halim, PhD  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

Siti Aishah binti Hassan, PhD  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Internal Examiner)

Mohd Rafii bin Yusop, PhD  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Internal Examiner)

Thomas C. Kaspar, PhD  
Professor  
United States Department of Agriculture - Agricultural Research Service  
United States of America  
(External Examiner)

NORITAH OMAR, PhD  
Associate Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 26 July 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zakaria bin Wahab, PhD  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

Ghizan bin Saleh, PhD  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

Nur Ashikin Psyquay Abdullah, PhD  
Senior Lecturer  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

HASANAH MOHD GHAZALI, PhD  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia  

Date:  

xvii
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

_______________________________
EKA TARWACA SUSILA PUTRA
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xvii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xviii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxix</td>
</tr>
</tbody>
</table>

## CHAPTER

1. **INTRODUCTION**  

2. **LITERATURE REVIEW**  
   2.1 *Musa* sp. cv. Rastali  
   2.2 Fruit Growth and Development  
      2.2.1 The Role of Stomata in the Growth and Development of Fruit  
      2.2.2 The Roles of Photosynthesis and Transpiration in the  
         Growth and Development of Fruit  
   2.3 Weak Neck Problem in Rastali  
   2.4 Genetic Diversity among Rastali Accessions and the Relationship  
      with Weak Neck Problem  
   2.5 Crop Nutrition Management and Possibilities to Overcome  
      Weak Neck Problem in Rastali  
      2.5.1 The Role of Magnesium  
      2.5.2 The Role of Boron  
      2.5.3 The Role of Silicon  
   2.6 Physiochemical Changes in Rastali Accessions during Ripening in  
      Relation to Weak Neck Problem  
      2.6.1 Physiochemical Changes during Ripening  
      2.6.2 The Role of Polygalacturonase and Pectin Methylesterase  
         in Fruit Cell Degradation  
      2.6.3 The Role of Ethylene in Fruit Cell Degradation and Ripening  

3. **CELL ULTRASTRUCTURE AND PEEL NUTRIENT CONTENT OF NECK ZONE IN SIX CULTIVARS OF *MUSA* SPP. FRUIT DURING RIPENING**  
   3.1 Introduction  
   3.2 Materials and Methods
## 4. MORPHOLOGICAL VARIATION AND GEOGRAPHICAL DISTRIBUTION OF *MUSA* SP. CV. RASTALI IN PENINSULAR MALAYSIA

4.1 Introduction 53
4.2 Materials and Methods 54
  4.2.1 Plant Materials 54
  4.2.2 Nutrient Content Analysis 55
  4.2.3 Morphological Descriptors 56
  4.2.4 Data Analysis 56
4.3 Results 57
  4.3.1 Climatic Conditions 58
  4.3.2 Nutrient Contents 58
  4.3.3 Principal Component Analysis 59
  4.3.4 Cluster Analysis 65
  4.3.5 Geographical Distribution of Rastali Accessions 65
4.4 Discussion 68
4.5 Conclusion 72

## 5. GENETIC VARIATION AMONG *MUSA* SP. CV. RASTALI ACCESSIONS AND ITS ASSOCIATION WITH A SINGLE MICROSATELLITE ALLELE

5.1 Introduction 73
5.2 Materials and Methods 75
  5.2.1 Plant Materials 75
  5.2.2 Molecular Method 76
  5.2.3 Data Analysis 77
5.3 Results 77
5.4 Discussion 86
5.5 Conclusion 88

## 6. PHYSIOLOGICAL ACTIVITIES, STOMATAL MORPHOLOGY, NUTRIENT CONTENT, GROWTH AND YIELD OF *MUSA* SP. CV. RASTALI IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY

6.1 Introduction 89
6.2 Materials and Methods 96
  6.2.1 Plant Materials 96
6.2.2 Methodology 96
6.2.3 Observations 97
6.2.3.1 Physiological Activities 97
6.2.3.2 Stomatal Morphology 98
6.2.3.3 Nutrient Content 101
6.2.3.4 Growth 102
6.2.3.5 Yield 102
6.2.4 Data Analysis 103
6.3 Results 104
6.3.1 The Physiological Activities at 5 Months after Planting 104
6.3.2 Physiological Activities at 7 Months after Planting 109
6.3.3 Stomatal Morphology at Flowering 116
6.3.4 Stomatal Conductance at Flowering 117
6.3.5 Transpiration Rate at Flowering 118
6.3.6 Chlorophyll a and b Content and Relative Chlorophyll Content at Flowering 128
6.3.7 Photosynthetic Rate at Flowering 129
6.3.8 Stomatal Conductance and Transpiration Rate at Fruit Growth Stage 130
6.3.9 Nutrient Content, Growth and Yield 135
6.4 Discussion 151
6.4.1 Physiological Activities at 5 and 7 Months after Planting 151
6.4.2 Stomatal Morphology, Conductance and Transpiration Rate at Flowering 155
6.4.3 Relative Chlorophyll Content, Chlorophyll Contents and Photosynthetic Rate at Flowering 161
6.4.4 Stomatal Conductance and Transpiration Rate at Fruit Growth Stage 165
6.4.5 Nutrient Content, Growth and Yield 166
6.5 Conclusion 171

7. CELL DEVELOPMENT, ENZYME AND HORMONE ACTIVITIES AND WEAK NECK IN MUSA SP. CV. RASTALI IN RELATION TO MAGNESIUM, BORON AND SILICON AVAILABILITY 173
7.1 Introduction 173
7.2 Materials and Methods 180
7.2.1 Plant Materials 180
7.2.2 Methodology 181
7.2.3 Observations 181
7.2.3.1 Cell Growth and Degradation 181
7.2.3.2 Enzyme Activities 182
7.2.3.3 Fiber Content 183
7.2.3.4 Ethylene Activity 184
7.2.3.5 Fruit Firmness 185
7.2.3.6 Soluble Solids Content (SSC) 185
7.2.3.7 Peel Colour 186
7.2.3.8 Weak Neck Intensity 187