UNIVERSITI PUTRA MALAYSIA

SURVIVAL OF *LISTERIA MONOCYTOGENES*
IN FROZEN BURGER PATTIES

WONG WOAN CHWEN

FSTM 2011 25
SURVIVAL OF *LISTERIA MONOCYTOGENES* IN FROZEN BURGER PATTIES

By

WONG WOAN CHWEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

June 2011
Dedicated to my beloved parents, siblings and friends for their endless love and support
Listeria monocytogenes is a foodborne pathogen which has caused outbreaks in several nations in which processed meats were the vehicle. The purpose of this study were to determine the prevalence of L. monocytogenes from frozen burger patties, assess the characteristics of the L. monocytogenes strains isolated from burger patties, and determine the effect of different cooking time in decontamination of L. monocytogenes in chicken burger patties.

A total of 220 samples were purchased from hypermarkets and retail shops in Malaysia from June to October 2009. Prevalence of L. monocytogenes in burger patties from this study was found to be 15.9%, in which the prevalence of L. monocytogenes in meat-based burger patties (22.3%) is
significantly higher than vegetarian burger patties (9.3%) at \(P<0.05 \). \textit{L. monocytogenes} was found to be most frequently detected in chicken patties (33.3%), followed by beef patties (22.9%), and fish patties (10.5%). By using MPN-PCR method, 15.9% of the samples were found to be positive for \textit{L. monocytogenes}. MPN plating and direct plating method can only detected 7.7% and 7.3%, respectively. The density of \textit{L. monocytogenes} detected in burger patties was ranged from 0 to 1,100 MPN/g.

Forty-one isolates of \textit{L. monocytogenes} recovered from raw burger patties were characterized based on their antibiotic resistance and RAPD banding pattern. In particular, 31.7% of isolates were susceptible to 11 antibiotics tested. Result showed that, resistance to tetracycline was most common (46.3%), followed by erythromycin (36.6%), amikacin (31.7%), and SMZ-TMP (17.1%). All \textit{L. monocytogenes} strains were sensitive towards imipenem and gentamicin. On the other hand, 31 out of 41 isolates in current study were typed by RAPD-PCR with primer OPA 10. As observed from the dendrogram, these \textit{L. monocytogenes} strains were classified into 3 clusters. These clusters were occupied by the strains recovered from all types of burger patties.

A simulation study was conducted to determine sufficient cooking time to reduce the number of \textit{L. monocytogenes} present in chicken burger patties to
safe level which is fit for human consumption. Artificially contaminated burger patties were cooked for 0, 2, 4, 5, 8, and 10 min to determine survival of *L. monocytogenes*. Results demonstrated a linear correlation (*R*² = 0.87) between mean log reduction of *L. monocytogenes* and cooking time. As a result from this study, it is suggested that a cooking time of 6 min or more is sufficient to decontaminate the burger patties, without control of temperatures of internal burger patties and cooking environment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SURVIVAL LISTERIA MONOCYTOGENES DALAM DAGING BURGER SEJUKBEKU

Oleh

WONG WOAN CHWEN

Jun 2011

Chairman: Professor Son Radu, PhD
Faculty: Sains dan Teknologi Makanan

Listeria monocytogenes ialah patogen bawaan makanan yang telah menyebabkan wabak di beberapa negara, di mana daging terproses adalah medium untuk patogen ini. Matlamat kajian ini adalah untuk menentukan kekerapan L. monocytogenes dalam daging burger sejukbeku, mengenalpasti ciri-ciri pencilan L. monocytogenes yang dipencil dari daging burger, dan mengkaji kesan masa memasak yang berbeza terhadap penyahkontaminasi L. monocytogenes dalam daging burger ayam.

Sejumlah 220 sampel dibeli dari pasaraya dan kedai runcit di Malaysia dari Jun hingga Oktober 2009. Kekerapan L. monocytogenes dalam daging burger dari kajian ini adalah sebanyak 15.9%, di mana kekerapan L. monocytogenes dalam daging burger (22.3%) adalah lebih tinggi daripada burger
vegetarian (9.3%), signifikan pada tahap P<0.05. *L. monocytogenes* didapati paling kerap dikesan dalam daging burger ayam (33.3%), diikuti dengan daging burger lembu (22.9%), dan daging burger ikan (10.5%). Dengan menggunakan kaedah MPN-PCR, sebanyak 15.9% sampel adalah positif bagi *L. monocytogenes*. Manakala, kaedah plating MPN dan plating langsung hanya dapat mengesan 7.7% dan 7.3%, masing-masing. Kepadatan *L. monocytogenes* yang dikesan dalam daging burger berada dalam julat 0 hingga 1,100 MPN/g.

Empat puluh satu pencilan *L. monocytogenes* yang dipencil dari daging burger mentah telah dicirikan berdasarkan kerintangan antibiotik dan pola pita RAPD. Khususnya, 31.7% pencilan *L. monocytogenes* adalah sensitif terhadap 11 antibiotik yang diuji. Keputusan kajian menunjukkan bahawa kerintangan *L. monocytogenes* terhadap tetrasiiklin adalah paling umum (46.3%), diikuti eritromisin (36.6%), amikasin (31.7%), dan SMZ-TMP (17.1%). Kesemua pencilan *L. monocytogenes* adalah sensitif terhadap imipenem dan gentamisin. Sebaliknya, sebanyak 31 daripada 41 pencilan dalam kajian ini dapat ditaip dengan RAPD-PCR oleh primer OPA 10. Seperti yang diperhatikan dari dendrogram, pencilan-pencilan *L. monocytogenes* telah diklasifikasi kepada 3 kelompok. Kesemua kelompok telah dihuni oleh pencilan-pencilan yang dipencil dari semua jenis daging burger.
Suatu kajian simulasi turut dijalankan untuk menentukan masa memasak yang mencukupi untuk mengurangkan kuantiti \(L. \) monocytogenes yang hadir dalam daging burger ayam ke tahap yang selamat dan sesuai untuk dimakan oleh manusia. Daging burger yang dikontaminasi telah dimasak selama 0, 2, 4, 6, 8, 10 minit untuk menentukan kemandirian \(L. \) monocytogenes dan keputusan menunjukkan korelasi lelurus \((R^2 = 0.87) \) di antara pengurangan purata log \(L. \) monocytogenes dan masa memasak. Keputusan kajian ini mencadangkan bahawa masa memasak 6 minit atau lebih adalah mencukupi untuk menyahkontaminasi daging burger, tanpa mengawal suhu dalaman daging burger dan suhu persekitaran memasak.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to Professor Dr. Son Radu, the chairman of my supervisory committee for the invaluable guidance and support throughout my study. Thank you very much for the advice and encouragement which help me to finish my study.

My deepest appreciation also goes to my co-supervisors, Dr. Farinazleen Mohamad Ghazali (Faculty of Food Science and Technology) and Associate Professor Dr. Cheah Yoke Kqueen (Faculty of Medicine and Health Sciences). Thank you so much for the trust, love and kindness from both of you.

Million thanks to all my dearest laboratory mates, (Dr. Chai, Dr. John, Jeya, Natasha, kak Noorlis, Tuan, Chai Fung, Tunung, Sandra, Li Fen, Elex, Jeshveen, Hidayah, Petrus, Ubong and Marian). You all are awesome! The laboratory is just too dull without your presence. I appreciate you and all moments that we went through together will remain in my heart forever.

My sincere gratitude is extended to all my best friends, especially Chai Fung, Cindy, Vicky, Se Vern, Albert, Siew Yoke, Ai Chen, Jiun Ting and Ching Hui who supported me morally and mentally. Thank you for always be
there whenever I need help. Not forgetting to acknowledge all staffs of Faculty of Food Science and Technology who helped me a lot during my study life.

Last but not least, I like to express my thousand heartfelt thanks to my father, mother, brothers and sister. Thanks so much for your loves and encouragements. I will never give up until I achieve my mission!
I certify that a Thesis Examination Committee has met on 16th June 2011 to conduct the final examination of Wong Woan Chwen on her thesis entitled “Survival of *Listeria monocytogenes* in frozen burger patties” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Jinap binti Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Muhammad bin Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fatimah binti Abu Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Jaime Martinez-Urtaza, PhD
Senior Lecturer
University de Santiago de Compostela
Spain
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Member)

Farinazleen Mohamad Ghazali, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is nor concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

WONG WOAN CHWEN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General introduction 1
1.2 Objectives 5

2 LITERATURE REVIEW

2.1 *Listeria monocytogenes* 6
2.1.1 Classification of the genus *Listeria* 8
2.1.2 Virulence factors involved in infectious process 9
2.1.3 Foodborne Listeriosis 11
2.1.4 Outbreaks of listeriosis caused by foods 14
2.1.5 Treatment for listeriosis 17
2.1.6 Antibiotic resistance of *Listeria monocytogenes* 18
2.2 *Listeria monocytogenes* in environment and foods 19
2.2.1 Association with various foods 20
2.2.2 Prevalence of *Listeria monocytogenes* in different foods 20
2.2.3 Persistence of *Listeria monocytogenes* in food processing environments 23
2.2.4 Factors affecting reduction of *Listeria monocytogenes* in foods 26
2.3 Detection of *Listeria monocytogenes* in foods 31
2.3.1 Culture dependent methods 32
2.3.2 Rapid methods 38
2.3.3 Combined MPN-PCR method 39
2.4 Characterization of *Listeria monocytogenes* 40
2.4.1 Antimicrobial susceptibility testing 40
2.4.2 Random amplification of polymorphic DNA 41
2.4.3 Role of molecular subtyping in Listeriosis outbreak detection and investigation 43

2.5 Frozen burger patties 44
 2.5.1 Interests on vegetarian food products 45
 2.5.2 Burger patties making process 46
 2.5.3 Possible contamination sources for frozen burger patties 47

3 PREVALENCE AND NUMBERS OF LISTERIA MONOCYTOGENES IN FROZEN BURGER PATTIES
 3.1 Introduction 48
 3.2 Materials and methods 50
 3.2.1 Sample collection 50
 3.2.2 Sample preparation and pre-enrichment 52
 3.2.3 Detection and enumeration of Listeria monocytogenes 52
 3.2.4 Genomic DNA preparation 53
 3.2.5 PCR assay 54
 3.2.6 Isolation on culture media 55
 3.2.7 Data analysis 55
 3.3 Results 56
 3.4 Discussion 60
 3.5 Conclusion 67

4 CHARACTERIZATION OF LISTERIA MONOCYTOGENES ISOLATED FROM BURGER PATTIES BASED ON ANTIBIOTIC RESISTANT PROFILE AND RAPD BANDING PATTERN
 4.1 Introduction 69
 4.2 Materials and methods 71
 4.2.1 Antimicrobial susceptibility testing (AST) 71
 4.2.2 RAPD-PCR analysis 75
 4.2.3 Data analysis 77
 4.3 Results 78
 4.4 Discussion 87
 4.5 Conclusion 96

5 SIMULATION OF DECONTAMINATION OF LISTERIA MONOCYTOGENES DURING COOKING OF CONTAMINATED CHICKEN BURGER PATTIES IN DOMESTIC KITCHENS
 5.1 Introduction 97
 5.2 Materials and methods 99
5.2.1 Preparation of *Listeria monocytogenes* inoculum 99
5.2.2 Sample preparation and inoculation 99
5.2.3 Cooking of burger patties 100
5.2.4 Enumeration of *Listeria monocytogenes* 101
5.2.5 Data analysis 101

5.3 Results 102
5.4 Discussion 104
5.5 Conclusion 109

6 GENERAL DISCUSSION AND CONCLUSION 111

REFERENCES 116
APPENDICES 136
BIODATA OF STUDENT 146
LIST OF PUBLICATIONS 147