

UNIVERSITI PUTRA MALAYSIA

ELECTROCHEMICAL STUDY OF MAGNESIUM DIBORIDE MODIFIED ELECTRODE

MOHD FARHAN BIN YUSRI

FS 2011 92

ELECTROCHEMICAL STUDY OF MAGNESIUM DIBORIDE MODIFIED ELECTRODE

By

MOHD FARHAN BIN YUSRI

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science March 2011 Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ELECTROCHEMICAL STUDY OF MAGNESIUM DIBORIDE MODIFIED ELECTRODE

By

MOHD FARHAN BIN YUSRI

March 2011

Chair : Assoc. Prof. Tan Wee Tee, PhD

Faculty : Faculty of Science

Use of a glassy carbon (GC) modified by adhered microparticles of MgB₂ mediates the reduction process of $Fe(CN)_6^{3-}$ during cyclic voltammetry. Potential at reduction peak was observed to shift slightly from 0.20 to 0.23 V and current is significantly enhanced by about two folds. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, electrolyte and scan rate. The result of scanning electron micrograph of MgB₂ obtained before and after electrolysis show the size of the MgB₂ microparticles increased slightly to the size ranging from 2 - 5.5 μ m attributing to the hydration effect and/or incorporation of some ionic species into the crystal lattices of MgB₂. Interestingly, redox reaction of Fe(III) solution using modified GC electrode remain constant even after 15 cycle reflecting the usability of the MgB₂ film attached to the GC electrode surface.

Use of a lithium doped magnesium diboride modified glassy carbon electrode enhance the oxidation current of ascorbic acid during cyclic voltammetry compare to bare GC and MgB₂ modified electrode. Peak potential was observed to shift slightly from around 0.40 to 0.25 V and current is significantly enhanced by about two folds. The sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, temperature, electrolyte and scan rate. The result of scanning electron micrograph of MgB₂ with Li⁺ doped obtained before and after electrolysis show the size increased slightly to the size ranging from $0.5 - 1.3 \mu m$ to $3 - 7 \mu m$ attributing to the hydration effect and/or incorporation of some ionic species into the crystal lattices of MgB₂.

The oxidation current of ascorbic acid decreased sharply after the first cycle and become stable with minor decreases after second cycle. The recovery values of $99.0\pm0.4\%$ was obtained after the addition of 0.5 mM ascorbic acid into rose flavour syrup while recovery of $99.2\pm0.1\%$ was obtained after the addition of 0.05 mM ascorbic acid into rose syrup. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

KAJIAN ELEKTROKIMIA MODIFIKASI ELEKTRODE MAGNESIUM DIBORIDA

Oleh

MOHD FARHAN BIN YUSRI

Mac 2011

Pengerusi : Prof. Madya Tan Wee Tee, PhD

Fakulti : Sains

Elektrod karbon kaca (KK) diubahsuai dengan perantara mikropartikel MgB_2 proses penurunan $Fe(CN)_6^{3-}$ dalam kitaran voltammetri. Puncak potensi yang diperoleh mengalami sedikit pergeseran daripada 0.20 ke 0.23 V dan arus secara signifikan meningkat kira-kira dua kali ganda. Kepekaan dalam keadaan kitaran voltammetri secara signifikan bergantung pada pH, elektrolit dan kadar kitaran. Keputusan imbasan mikrograf elektron MgB_2 diperolehi sebelum dan selepas elektrolisis menunjukkan saiz sedikit peningkatan dengan saiz berkisar 2-5.5 µm kesan penghidratan dan/atau penggabungan beberapa spesies ion ke dalam kekisi kristal MgB_2 . Menariknya, reaksi redoks larutan Fe(III) menggunakan elektrod ini tetap konsisten setelah 15 kitaran mencerminkan kegunaan dari filem MgB_2 melekat pada permukaan elektrod KK.

Lekatan lithium pada modifikasi KK yang diubahsuai dengan MgB₂ meningkatkan arus pengoksidaan paling tinggi pada kitaran voltammetri asid askorbik berbanding dengan elektrod KK tanpa modifikasi dan elektrod karbon kaca (KK) diubahsuai dengan mikropartikel MgB₂. Puncak potensi mengalami sedikit pergeseran dari 0.40 ke 0.25 V dan arus secara signifikan meningkat kira-kira dua kali ganda. Kepekaan dalam keadaan kitaran voltammetri secara signifikan bergantung pada pH, suhu, elektrolit dan kadar kitaran. Keputusan imbasan mikrograf elektron MgB₂ dengan lekatan lithium diperolehi sebelum dan selepas elektrolisis menunjukkan saiz sedikit peningkatan dengan saiz berkisar antara 0.5 - 1.3 µm ke 3 - 7 µm kesan penghidratan dan/atau penggabungan beberapa spesies ion ke dalam kekisi kristal MgB₂.

Puncak pengoksidaan asid askorbik turun mendadak selepas kitaran pertama dan menjadi stabil selepas kitaran kedua. Penentuan kandungan asid askorbik ditentukan dengan nilai 99.0±0.4% diperoleh untuk sampel air sirap yang ditambah kepekatan asid askorbik 0.5 mM manakala 99.2±0.1% diperoleh daripada penambahan kepekatan asid askorbik 0.05 mM ke dalam sampel sirap.

ACKNOWLDGEMENTS

Firstly, I would like to take this opportunity to express my sincere gratitude and appreciation to my project supervisor, Associate Professor Dr. Tan Wee Tee for his continuous guidance, invaluable advices, constructive comments, patient, assistance and encouragement throughout this research. The sharing idea had not only been helpful in the progress of this project but also served as useful principle of life in year to come and these experiences are indeed invaluable.

Also not forgetting the members of my Supervisory Committee, Prof. Zulkarnain Zainal and Dr. Chen Soo Kien who also helps me in finishing the project with his good advices which burn my spirit to do the project.

My special thanks to beloved parents Yusri bin Abdul Shukor and Nooriah binti Ariffin, and my wife, Aisyaturradhiah binti Khazali for their helping and support to complete this project. Without their trust in letting me to spend my time nearly two years in lab include in holiday to do this project, maybe the project can't be finished.

Lastly to my friends, especially from lab 253, thank you for your help. I'm really glad to have support from all of you. May Allah bless all of you.

I certify that a Thesis Examination Committee has met on **2011** to conduct the final examination of **Mohd Farhan bin Yusri** on his thesis entitled **Electrochemical Study of Magnesium Diboride Modified Electrode** in accordance with the Universities and University Colleges Act 1971 and the Constitution of the University Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science

Members of the Thesis Examination Committee were as follows:

Tan Yen Ping, PhD Faculty of Science University Putra Malaysia (Chairman)

Anuar Kassim, PhD Professor Faculty of Science University Putra Malaysia (Internal Examiner)

Nor Azah Yusof, PhD Associate Professor Faculty of Science University Putra Malaysia (Internal Examiner)

Sulaiman Ab. Ghani, PhD Associate Professor School of Chemistry University Sains Malaysia Malaysia (External Examiner)

> PROF. DR. SHAMSUDDIN SULAIMAN, PhD School of Graduate Studies University Putra Malaysia

Date:

This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Assoc. Prof. Tan Wee Tee, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Zulkarnain bin Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Chen Soo Kien, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENT

			Page		
ABSTR	ii				
ABSTR	ABSTRAK				
ACKN	vi				
APPRO	vii				
DECLA	viii				
LIST OF TABLES			xiii		
LIST OF FIGURES			XV		
LIST O	xxii				
CHAP	rer				
1	INT	RODUCTION			
	1.1	Chemical Modified Electrodes (CME)	1		
	1.2	Development Stages of CME	2		
	1.3	Various types of CME	3		
	1.4	Solid State Electrochemistry	7		
	1.5	Objectives	9		
2	LIT	REATURE REVIEW			
	2.1	Electrochemistry	10		
	2.2	Fundamental of Voltammetry	11		
		2.2.1 Cyclic voltammetry (CV)	11		
	2.3	Fundamental of Chronocoulometry (CC)	14		
	2.4	Fundamental of Chronoamperometry (CA)	17		
	2.5	Solid Phase Voltammetry	20		
	2.6	Magnesium Diboride (MgB ₂)	23		
	2.7	Fabrication of MgB ₂	26		
3	MET	THODOLOGY			
	3.1	Instrumentation and Apparatus	28		
		3.1.1 BAS 50W Voltammetry Analyzer	28		
		3.1.2 Working Electrode (WE)	28		
		3.1.3 Auxiliary/Counter Electrode (CE)	29		
		3.1.4 Reference electrode (RE)	29		
		3.1.5 Voltammetry Cell	29		

	3.2	Materi	als and Reagents	30
	3.3	Procee	lure for Preparation of Chemically	
		Modif	ied Electrodes	30
		3.3.1	Mechanical Attachment	30
		3.3.2	Lithium Doped	31
		3.3.4	General Procedures of Electrochemical	
			Measurements	31
	3.4	Procee	lure Data Collection on Characterization	
		of Mag	gnesium Diboride Modified Electrode	32
		3.4.1	Cyclic Voltammograms of MgB ₂	
			Adhered to Electrode Surface via	
			Mechanical Attachment	32
		3.4.2	Effect of Varying Supporting	
			Electrolytes	32
		3.4.3	Effect of Varying pH	32
		3.4.4	Effect of Different Working Electrodes	32
		3.4.5	Chronocoulometry	33
		3.4.6	Chronoamperometry	33
	3.5	Applic	cation of MgB ₂ Modified GC Electrode	
		on CV	of Potassium Ferricyanide	34
		3.5.1	Enhancement Study on Potassium	
			Ferricyanide	34
		3.5.2	Effect of Different Supporting	
			Electrolytes	34
		3.5.3	Effect of Varying pH	34
		3.5.4	Effect of Potential Cycling	35
		3.5.5	Effect of Varying Fe(III) Concentration	35
		3.5.6	Effect of Varying Scan Rate	35
		3.5.7	Chronocoulometry	35
		3.5.8	Chronoamperometry	35
	3.6	Procee	lure Data Collection on Application of	
		Lithiu	m Doped MgB ₂ Modified GC Electrode	
		on Asc	corbic Acid	36
		3.6.1	Enhancement Study on Ascorbic Acid	36
		3.6.2	Effect of Varying pH	36
		3.6.3	Effect of Potential Cycling	36
		3.6.4	Effect of Varying Scan Rate	36
		3.6.5	Effect of Temperature	37
		3.6.6	Calibration Graph	37

	3.6.7 Ascorbic Acid Determination /	
	Recovery Experiment	37
	3.6.8 Interference effect	37
	3.6.9 Interference study on difference	
	electrode	38
	3.6.9 Chronocoulometry	38
	3.6.10 Chronoamperometry	38
3.7	Scanning Electron Microscopy (SEM)	38
4 RES	SULTS AND DISCUSSION	
4.1	Characterization of Magnesium Diboride	39
	4.1.1 Characterization of Magnesium	
	Diboride using Potassium Chloride	
	(KCl) as Supporting Electrolyte	39
	4.1.2 Characterization of Magnesium	
	Diboride using Potassium Nitrate	
	(KNO ₃) as Supporting Electrolyte	46
	4.1.3 Characterization of Magnesium	
	Diboride using Ammonium Sulphate	
	(NH ₄) ₂ SO ₄ as Supporting Electrolyte	51
	4.1.4 Characterization of Magnesium	
	Diboride using Potassium Acetate	
	(CH ₃ COOK) as Supporting Electrolyte	57
	4.1.5 Characterization of Magnesium	
	Diboride using Potassium Dihydrogen	
	Phosphate (KH ₂ PO ₄) as Supporting	
	Electrolyte	59
4.2	Electrochemical Reduction of Potassium	
	Ferricyanide Mediated by Magnesium	
	Diboride Modified Carbon Electrode	65
	4.2.1 Effect of Magnesium Diboride Modified	
	GC Electrode on the Redox Reaction of	
	Potassium Ferricyanide During CV	65
	4.2.2 Effect of Varying Supporting Electrolyte	66
	4.2.3 Effect of Varying pH	68
	4.2.4 Effect of Potential Cycling	79
	4.2.5 Effect of Varying Fe (III) Concentration	70
	4.2.6 Effect of Varying Scan Rate	71
	4.2.7 Effect of Thickness of MgB2 Coating	72
	4.2.8 Chronoamperometry	73
	4.2.9 Chronocoulometry	74
	4.2.10 Scanning Electron Microscopy	75

4.3	Electrochemical Oxidation of Ascorbic Acid		
		Mediated by Lithium Doped Magnesium	
		Diboride Modified Carbon Electrode	76
	4.3.1	Effect of Magnesium Diboride Modified	
		GC Electrode on the Redox Reaction of	
		Ascorbic Acid During CV	76
	4.3.2	Effect of varying pH	78
	4.3.3	Effect of potential cycling	79
	4.3.4	Effect of varying scan rate	79
	4.3.5	Effect of Temperature	80
	4.3.6	Effect of Varying Concentration	82
	4.3.7	Ascorbic Acid Determination /Recovery	
		Experiment	83
	4.3.8	Effect of Interference on the CV of	
		Ascorbic Acid –	85
	4.3.9	Cyclic Voltammogram of Ascorbic Acid	
		in the presence of Inteference at GC,	
		MgB2/GC, and MgB2/Li+/GC electrode	87
	4.3.10	Chronocoulometry	89
	4.3.11	Chronoamperometry	90
	4.3.12	Scanning Electron Microscopy	91
5 CON	CLUSI	ON	92
RECOMMEND	ATION	FOR FURTHER STUDY	95
REFERENCES/BIBLIOGRAPHY			
APPENDICES			102

BIODATA OF STUDENT

112