CB1-MEDIATED EFFECTS OF DELTA-9-TETRAHYDROCANNABINOL (Δ9THC) ON NEURONAL PROTEIN EXPRESSIONS IN THE HIPPOCAMPUS OF MALE SPRAGUE DAWLEY RATS

FATIN NADZIRAH BINTI ZAKARIA

FPSK(m) 2013 2
CB₁-MEDIATED EFFECTS OF DELTA-9-TETRAHYDROCANNABINOL (Δ⁹THC) ON NEURONAL PROTEIN EXPRESSIONS IN THE HIPPOCAMPUS OF MALE SPRAGUE DAWLEY RATS

By

FATIN NADZIRAH BINTI ZAKARIA

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

January 2013
Neuroplasticity refers to the ability of the brain to respond as a result of a certain experience. Delta-9-tetrahydrocannabinol (Δ⁹THC), originally extracted from the female plant of Cannabis sativa is regarded as the most active psychotropic ingredient of cannabis. Cannabis sativa, the largest variety grows in both tropical and temperate climates. Δ⁹THC has been shown to affect sensory perception, cognition and memory, reward, appetite, motor coordination and attention. A recent review of references indicates that Δ⁹THC plays an important role in neuronal plasticity. In-vitro and in-vivo studies showed that administration of Δ⁹THC modulates several neuronal protein expressions involved in synaptic plasticity in hippocampal region. Previous studies have provided clues on how hippocampus plays an important role in memory process. However the molecular alteration and cellular mechanism leading to neuronal plasticity
are not yet well understood. Therefore, the objectives of this study were to evaluate the effects of acute and chronic Δ⁹THC treatment on total ERK1 and ERK2 (p44 and p42 MAP kinase), p-ERK1 and p-ERK2 (p-p44 and p-p42 MAP kinase), CREB, p-CREB and c-fos protein levels in the rat hippocampus of brain by studying the CB₁ receptor mechanism which includes the receptor agonist and antagonist. These proteins are thought to be involved in neuronal plasticity. This study was done in 3 experiments. Experiment 1 and 2, the rats were divided into 4 groups which were control group and three treated groups (0.5, 1.0 and 2.0 mg/kg Δ⁹THC) respectively. For acute treatment (experiment 1), the rats in control group received vehicle (2% ethanol + 0.9% NaCl) only while for treated group, the rats received 0.5, 1.0 and 2.0 mg/kg of Δ⁹THC which were administered every 48 hours for 7 days. For chronic treatment (experiment 2), Δ⁹THC (0.5, 1.0 and 2.0 mg/kg) were administered every 48 hours for 21 days. All drugs and vehicle were administered via intraperitoneal injection (i.p.). The volume of i.p. injection was 0.1 ml/100 g body weight. Based on the chronic study, 2.0 mg/kg Δ⁹THC which was the optimum dose were used in the combination treatment (experiment 3) to study the effect of chronic Δ⁹THC with pretreatment CB₁ antagonist SR141716A (rimonabant). All drugs solution was prepared immediately prior to the experiment. The data were corrected on the basis of β-actin levels to normalize possible differences between each loading volume. The protein levels were presented as percentage changes compared with control group, designated as 100%. One-way ANOVA was performed followed by a post-hoc Tukey’s Multiple Comparison Test where applicable for inter-group comparison, with P<0.05 considered a significant difference. The result showed that acute Δ⁹THC treatment at all doses modulates the levels of ERK1, ERK2 (P<0.01),
p-ERK1 (P<0.05; P<0.01), p-ERK2 (P<0.01), CREB and c-fos (P<0.05; P<0.01) proteins. However, only Δ^9THC at 0.5 mg/kg modulates the level of p-CREB. These finding produce inconclusive result and future investigation needs to be explored. Meanwhile, for chronic treatment, administration of Δ^9THC also modulates the levels of ERK1 (P<0.05; P<0.001), ERK2 (P<0.01), CREB, p-CREB (P<0.01) and c-fos (P<0.05) protein levels. There have a reduction in the level of p-ERK1 at Δ^9THC 1.0 mg/kg. Generally, it supposed to be increased since it had been noticed that Δ^9THC at 2.0 mg/kg showed significantly differences. The mechanism underlying these finding is remain unclear and considered as inconclusive result. The protein expression was also studied to determine whether the changes observed due to CB$_1$ receptor activation using selective antagonist SR141716A. Based on the result obtained, pre-treatment with CB$_1$ antagonist SR141716A failed to alter the Δ^9THC induced effect on ERK1 and c-fos expressions. Interestingly, these effects can be reversed by SR141716A on ERK2, p-ERK1, p-ERK2 and p-CREB proteins. In conclusion, the present data suggest that synthesis of ERK1 and c-fos are not CB$_1$ mediated effect but synthesis of ERK2 and activated of ERK as well as CREB by Δ^9THC are through CB$_1$ mediated effect pathway.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PERANTARA CB1 DELTA-9-TETRAHYDROCANNABINOL (Δ9THC) TERHADAP PARAS PROTEIN DI DALAM HIPOKAMPUS TIFFUS SPRAGUE DAWLEY JANTAN

Oleh

FATIN NADZIRAH BINTI ZAKARIA

Januari 2013

Pengerusi : Mohamad Aris Bin Mohd Moklas, PhD
Fakulti : Perubatan Dan Sains Kesihatan

Neuroplastisiti adalah merujuk kepada keupayaan otak untuk bertindak balas sebagai hasil daripada pengalaman yang tertentu. Delta-9-tetrahydrocannabinol (Δ9THC), diekstrak secara semulajadi daripada tumbuhan Cannabis sativa spesis betina yang dianggap sebagai bahan psikotropik yang paling aktif. Cannabis sativa merupakan tumbuhan yang tumbuh dalam iklim tropika dan zon iklim sederhana. Δ9THC telah terbukti mempengaruhi deria persepsi, kognitif dan ingatan, ganjaran, selera, koordinasi motor dan penumpuan. Rujukan kajian terkini menunjukkan bahawa Δ9THC memainkan peranan yang penting dalam keplastikan sinaps. Kajian in-vivo dan in-vitro menunjukkan bahawa suntikan Δ9THC memodulasi beberapa protein dimana ia terlibat dalam keplastikan sinaps di bahagian hipokampus. Kajian terdahulu memberi petunjuk tentang bagaimana hipokampus memainkan peranan yang penting di dalam proses ingatan. Walaubagaimanapun, pengubahsuaian molekul dan mekanisma sel yang...
membawa kepada keplastikan sinaps masih belum difahami sepenuhnya. Justeru, objektif kajian ini adalah untuk menilai kesan rawatan Δ⁹THC akut dan kronik bagi ERK1 dan ERK2 (p44 MAP kinase), p-ERK1 dan p-ERK2 (p-p44 dan p-p42 MAP kinase), CREB, p-CREB dan c-fos dalam hipokampus tikus dengan mengkaji mekanisme reseptor CB₁ termasuk reseptor agonis dan reseptor antagonis. Protein-protein ini dianggap terlibat dalam keplastikan sinaps. Kajian ini dilakukan dalam 3 eksperimen. Bagi eksperimen 1 dan 2, tikus telah dibahagikan kepada empat kumpulan iaitu kumpulan kawalan dan 3 kumpulan yang dikaji (0.5, 1.0 and 2.0 mg/kg). Untuk rawatan akut (eksperimen 1), tikus dalam kumpulan kawalan menerima ejen pelarut (2% ethanol + 0.9% NaCl) sahaja manakala bagi kumpulan kajian, tikus menerima 0.5, 1.0 dan 2.0 mg/kg Δ⁹THC dan telah disuntik setiap 48 jam selama 7 hari. Untuk rawatan kronik (eksperimen 2), Δ⁹THC (0.5, 1.0 dan 2.0 mg/kg) telah disuntik setiap 48 jam selama 21 hari. Semua bahan aktif dan ejen pelarut telah diberi melalui suntikan intra peritoneum (i.p). Jumlah suntikan i.p adalah 0.1 ml/100 g daripada berat badan. Berdasarkan kajian kronik, 2.0 mg/kg Δ⁹THC yang merupakan dos optimum telah digunakan dalam kajian gabungan (eksperimen 3) untuk mengkaji kesan kronik Δ⁹THC dengan pra-rawatan CB₁ antagonis SR141716A (rimonabant). Semua larutan bahan aktif disediakan sejurus sebelum eksperimen. Data diperbetulkan berdasarkan paras β-aktin untuk menormalkan perbezaan yang mungkin diantara setiap isipadu muatan. Paras protein telah diterjemahkan sebagai perubahan peratusan berbanding dengan kumpulan kawalan, yang ditetapkan sebagai 100%. One-way ANOVA telah dijalankan diikuti dengan Ujian Perbandingan Pelbagai Tukey pos-hoc dimana ia digunapakai untuk perbandingan antara kumpulan, dengan P<0.05 dianggap sebagai perbezaan yang signifikan. Hasil menunjukkan bahawa rawatan akut Δ⁹THC pada setiap dos
memodulasi paras protein ERK1, ERK2 (P<0.01), p-ERK1 (P<0.05, P<0.01), p-ERK2 (P<0.01), CREB dan c-fos (P<0.05, P<0.01). Walaubagaimanapun, hanya Δ⁹THC dos 0.5 mg/kg memodulasi paras protein p-CREB. Penemuan ini menghasilkan keputusan yang tidak dapat disimpulkan dan kajian lanjutan perlu dijalankan. Sementara itu, untuk rawatan kronik, suntikan Δ⁹THC juga memodulasi paras protein ERK1 (P<0.05, P<0.001), ERK2 (P<0.01), CREB, p-CREB (P<0.01) and c-fos (P<0.05). Terdapat penurusan paras protein p-ERK1 pada dos 1.0 mg/kg Δ⁹THC. Secara umum, paras protein tersebut sepatutnya meningkat apabila terdapat perbezaan yang signifikan pada dos 2.0 mg/kg Δ⁹THC. Mekanisma di sebalik penemuan ini masih tidak jelas dan dianggap sebagai keputusan yang tidak dapat disimpulkan. Ekspresi protein juga dikaji untuk menentukan samada perubahan yang diperhatikan adalah melalui pengaktifan reseptor CB₁ menggunakan antagonis SR141716A. Berdasarkan keputusan yang diperolehi, pra-rawatan dengan CB₁ antagonis SR141716A gagal mengubah kesan Δ⁹THC yang teraruh pada protein ERK1 dan c-fos. Menariknya, kesan ini boleh diterbalikkan oleh SR141716A pada protein ERK2, p-ERK1, p-ERK2 dan p-CREB. Kesimpulannya, sintesis ERK1 dan c-fos adalah bukan kesan perantara CB₁, akan tetapi, sintesis ERK2, pengaktifan ERK dan juga CREB oleh Δ⁹THC adalah melalui kesan perantara CB₁.
ACKNOWLEDGEMENTS

First and foremost, I would like to dedicate my deepest thank to Allah S.W.T for blessing me with patience and determination to make this study completed successfully.

I would like to express my deep gratitude to my supervisor, Dr Mohamad Aris Bin Mohd Moklas, for his constant valuable ideas, advices, guidance and support throughout the whole production of this project. Without the help and support from him, this project may not have been completed with fulfilling expectations.

A big thanks to co-supervisor, Dr Mohamad Taufik Hidayat Bin Bahalruddin and Dr Che Norma Binti Mat Taib for their continuous ideas, helps and advises. Sincere appreciation is extended to all seniors in the laboratory for their immeasurable supports, assistance and encouragement.

My utmost gratitude is extended to all staffs of Anatomy Department, Cell Signaling laboratory, and Animal House who have been directly or indirectly involved in this study. Your generosity, help and valuable time are highly appreciated. My heartfelt appreciation goes to my family and friends for their moral support and encouragement throughout my study.

Last but not least, I owe my sincere thanks to Graduate Research Fellowship (GRF) for the scholarship awarded for my study. Highest appreciation also goes to Fundamental Research Grant Scheme (FRGS) from Ministry of Higher Education for their grant support of this project.
APPROVAL

I certify that an Examination Committee has met on 09/01/2013 to conduct the final examination of Fatin Nadzirah Binti Zakaria on her Master of Science thesis entitled “CB1-mediated effect of Delta-9-tetrahydrocannabinol (Δ9THC) on neuronal protein expressions in the hippocampus of male Sprague dawley rats” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian (Higher Degree) Act 1981. The committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee are as follows:

Roslida Binti Abd Hamid@Abd Razak, PhD
Dr
Faculty Of Medicine And Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Roslan Bin Sulaiman, PhD
Professor
Faculty Of Medicine And Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zuraini Binti Ahmad, PhD
Associate Professor
Faculty Of Medicine And Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Nasaruddin Bin Abdul Aziz , PhD
Professor
Kuliyyah Of Medicine And Health Sciences
Insaniah University College
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
APPROVAL

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohamad Aris Bin Mohd Moklas, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohamad Taufik Hidayat Bin Bahalruddin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Che Norma Binti Md Taib, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

FATIN NADZIRAH BINTI ZAKARIA

Date: 9 January 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem statement 6
1.3 Research objectives 7
1.4 Hypothesis 7
1.5 Significance of study 8

2 LITERATURE REVIEW

2.1 History of cannabis 9
2.2 *Cannabis sativa* 13
2.3 Cannabinoid receptors 15
2.3.1 CB₁ cannabinoid receptor 16
2.3.2 CB₂ cannabinoid receptor 20
2.4 Cannabinoid system in the brain 21
2.4.1 Exogenous cannabinoids 21
2.4.1.1 Delta-9-tetrahydrocannabinol (Δ⁹THC) 22
2.4.2 Endogenous cannabinoids 25
2.4.3 Endocannabinoid signaling 25
2.5 Cannabinoid receptor antagonist 27
2.5.1 Rimonabant 27
2.6 Role in hippocampus 29
2.7 Neuronal Plasticity 31
2.8 Memory process 32
2.9 Pharmacological effect of Δ⁹THC 35
2.9.1 Tolerance and dependence 35
2.9.2 Adverse effects of cannabis on central nervous system 36
2.10 Extracellular signal-regulated kinase (ERK) 37
2.11 cAMP- response element binding protein (CREB) 39
2.11.1 Regulation of synaptic function by CREB 41
2.12 *c-fos* 42
3 METHODOLOGY
3.1 Subjects
3.2 Drug administration
3.3 Sample preparation
3.4 Western blotting: Measurement of total ERK1, ERK2, p-ERK1, p-ERK2, CREB, p-CREB and c-fos protein levels
3.4.1 Preparation of SDS gel
3.4.2 Running and transferring the gels
3.4.3 Immunoblotting
3.4.4 Developing and analyzing the membrane
3.4.5 Stripping
3.5 Statistical analysis

4 RESULTS
4.1 Effects of acute Δ⁹THC on ERK1, ERK2, p-ERK1, p-ERK2, CREB, p-CREB and c-fos protein levels in the hippocampus of rats
4.2 Effects of chronic Δ⁹THC on ERK1, ERK2, p-ERK1, p-ERK2, CREB, p-CREB and c-fos protein levels in the hippocampus of rats
4.3 Effects of the CB₁ antagonist SR141716A on changes in ERK1, ERK2, p-ERK1, p-ERK2, CREB, p-CREB and c-fos protein levels in the hippocampus of rats

5 DISCUSSION

6 CONCLUSION AND FUTURE RECOMMENDATIONS
6.1 Conclusion
6.2 Future work and recommendation

REFERENCES
APPENDICES
BIODATA OF STUDENT