ANALYSIS OF GENETIC POLYMORPHISMS OF \textit{TBX5}, \textit{NKX2-5} AND \textit{GATA4} CARDIAC TRANSCRIPTION FACTOR GENES IN MALAYSIAN NON SYNDROMIC CONGENITAL HEART DISEASE SUBJECTS

NORA F. KADHIM

FPSK(m) 2012 26
ANALYSIS OF GENETIC POLYMORPHISMS OF TBX5, NKX2-5 AND GATA4 CARDIAC TRANSCRIPTION FACTOR GENES IN MALAYSIAN NON SYNDROMIC CONGENITAL HEART DISEASE SUBJECTS

By

NORA F. KADHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2012
DEDICATIONS

This thesis is dedicated to my beloved parents who motivate me to have a higher education, my wonderful husband Hussein and sweet daughter Rewan for their patient and extreme encouragement for me to accomplish my study and finally to my best friend and sister Nada, who always inspires me.
Abstract of the thesis presented to the School of Graduate Studies of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANALYSIS OF GENETIC POLYMORPHISMS OF TBX5, NKX2-5 AND GATA4 CARDIAC TRANSCRIPTION FACTOR GENES IN MALAYSIAN NON SYNDROMIC CONGENITAL HEART DISEASE SUBJECTS

By

NORA F. KADHIM

May 2012

Chair: Prof. Patimah Ismail, PhD

Faculty: Faculty of Medicine and Health Sciences

Congenital heart disease (CHD) is the most common congenital anomaly of the newborn infants. The underlying etiology of CHD is unrecognized in the majority of cases. Cardiac transcription factor genes have a crucial role in the cardiogenesis process during the embryonic period, hence a number of single nucleotide polymorphisms (SNPs) have been identified to cause CHD in many populations but there have been no studies that had been found among Malaysian CHD subjects. Hence, this study was initiated to determine the allelic and genotypic frequencies of three important polymorphisms of cardiac transcription factor genes, namely the intronic polymorphism rs11067075 of TBX5 gene, R25C of NKX2-5 gene and G296S of GATA4 gene. We conducted a cross-sectional unmatched genetic association study
between cases with CHD and healthy control subjects to determine the association of these polymorphisms and their genotype-phenotype correlation. A total of 150 non-syndromic CHD subjects and 150 normal healthy individuals were recruited to this study with no matching for age and gender between cases and controls. We designed a protocol for genotyping of those three polymorphisms by real time-PCR-high resolution melt (HRM) analysis. Our study results shows that, the frequency of the polymorphism rs11067075 of \(TBX5 \) gene was 4.7% in CHD subjects versus a frequency of 0.7% in the healthy controls showed a significant association with the development of CHD (\(p<0.05 \)). \(NKX2-5 \) gene heterozygote R25C (c.73.C>T) polymorphism was totally absent from both the cases and the control groups while genotyping of this polymorphism was incidentally accompanied by genotyping of a common variant of \(NKX2-5 \) gene (c.63A>G). Nevertheless, the genotype and allele frequencies of the polymorphism c.63A>G of \(NKX2-5 \) gene showed no difference between the cases and control groups (\(p=0.893 \)). \(GATA4 \) gene heterozygote G296S polymorphism was also not detected in this study cohort. The association of \(TBX5 \) gene intronic polymorphism (rs11067075) with the development of CHD in this study emphasizes the role of \(TBX5 \) gene in the pathogenesis of non-syndromic CHD. The selected polymorphisms of \(NKX2-5 \) gene (R25C) and \(GATA4 \) gene (G296S) were not associated with the development of CHD in Malaysian subjects. However, investigating \(GATA4 \) and \(NKX2-5 \) genes in a bigger sample size for different variants might reveal an association of those gene polymorphisms with the development of CHD in Malaysian subjects. High resolution melting (HRM) analysis was used as a new technology for detecting those polymorphisms and had shown its power in an efficient genotyping and had the advantage of simultaneous genotyping and screening for sequence variants of R25C of \(NKX2-5 \) gene.
Abstrak tesis yang dikemukakan kepada Sekolah Pengajian Siswaah Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

ANALISIS GEN POLIMORFISME TERHADAP GEN FAKTOR TRANSKRIPSI JANTUNG TBX5, NKX2-5 DAN GATA4 DI KALANGAN PESAKIT JANTUNG KONGENITAL BUKAN SINDROMIK DI MALAYSIA

Oleh

NORA F. KADHIM
Mei 2012

Pengerusi: Prof. Patimah Ismail, PhD
Fakulti: Fakulti Perubatan Dan Sains Kesihatan

Penyakit jantung kongenital (CHD) adalah penyakit kongenital anomali yang paling kerap berlaku di kalangan bayi yang baru lahir. Etiologi yang berdasarkan CHD adalah tidak dikenalpasti dalam kebanyakan kes. Gen faktor transkripsi jantung mempunyai peranan yang penting dalam proses kardiogenesis semasa tempoh embrio, maka beberapa nukleotida polimorfisme (SNPs) telah dikenal pasti menjadi punca CHD dalam beberapa populasi tetapi tidak terdapat sebarang kajian yang telah ditemui di kalangan subjek CHD di Malaysia. Oleh itu, kajian ini telah dimulakan untuk menentukan frekuensi alel dan genotip tiga polimorfisme yang penting dalam gen faktor transkripsi jantung iaitu polimorfisme rs11067075 dalam gen TBX5, R25C dalam gen NKX2-5 dan G296S dalam gen GATA4. Kami telah menjalankan kajian perkaitan genetik yang tidak seimbang diantara subjek kes CHD dengan subjek kawalan yang sihat untuk menentukan hubungkait polimorfisme ini dan korelasi

v
genotip-fenotip mereka. Sebanyak 150 yang mempunyai CHD bukan sindromik dan 150 orang individu normal yang sihat telah direkrut untuk kajian ini dengan tidak memadankan umur dan jantina antara subjek kes dan kawalan. Kami telah mereka protokol untuk genotyping tiga polimorfisma ini menggunakan analisis masa nyata-PCR-resolusi leburan tinggi (HRM). Hasil kajian kami menunjukkan bahawa, frekuensi polimorfisma rs11067075 terhadap gen TBX5 adalah 4.7% dalam subjek CHD dibandingkan dengan frekuensi 0.7% dalam subjek kawalan. Ini telah menunjukkan hubungan yang signifikan dengan perkembangan CHD (p<0.05). Gen heterozygot NKX2-5 R25C (c.73.C>T) polimorfisma tidak didapati dalam kedua-dua kes dan kawalan manakala genotyping terhadap polimorfisme ini kebetulan disertai oleh genotyping gen varian biasa NKX2-5 (c.63A>G). Walau bagaimanapun, frekuensi genotip dan alel bagi polimorfisme c.63A>G dalam gen NKX2-5 tidak menunjukkan perbezaan di antara kumpulan kes dan kawalan (p= 0.893). Gen heterozygot GATA4 bagi polimorfisme G296S juga tidak dapat dikesan dalam kajian kohort ini. Hubungan antara gen intronik polimorfisma (rs11067075) dengan perkembangan CHD dalam kajian ini menekankan peranan gen TBX5 dalam patogenisis CHD bukan sindromik. Semua polimorfisma yang dipilih iaitu polimorfisma gen NKX2-5 (R25C) dan GATA4 (G296S) tidak ada korelasi bagi perkembangan CHD di kalangan subjek di Malaysia. Walau bagaimanapun, kajian terhadap gen GATA4 dan NKX2-5 dalam saiz sampel yang lebih besar untuk varian yang berbeza mungkin akan mendedahkan hubungan gen polimorfisme ini dengan perkembangan CHD di kalangan subjek di Malaysia. Analisis HRM telah digunakan sebagai satu teknologi baru bagi mengesan polimorfisme dan ia mempunyai kelebihan melakukan genotyping dan saringan untuk varian urutan R25C dalam gen NKX2-5 secara serentak.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Patimah Ismail for her knowledge, generous guidance, encouragement, and her big support that help me to prepare this thesis. I would also like to show my sincere acknowledgement to my co-supervisor Dr. Mazeni Alwi for his kindness and invaluable assistance, as this research would not have been possible without his great support. I am also indebted to my co-supervisor, Dr. Ahmad Fazli Abdul Aziz for his great guiding spirit, expert suggestions and constructive advices that had helped to set the milestones of my study. I also would like to show my great appreciation to my advisor, Dr. R. Vasudevan who has offered much assistance, advice and thoughtful insight that had aided me to accomplish my study.

I would like to thank all the nursing staff and the working doctors in the paediatrics department of the National heart institute (IJN) for their assistance in recruiting the subjects for this study particularly to Dr. Adura Abd Raufz and the nurse manager, Mrs. Anida Elias, for their extreme kindness and the assistance they had offered.

I am grateful to my parents, my dear husband, my daughter and my family for their love, support and extreme encouragement throughout the duration of my study.
I Certify that a Thesis Examination Committee has met on to conduct the final examination of Nora Fawzi Kadhim Al-Shawee on her thesis entitled “Analysis of Genetic Polymorphisms of TBX5, NKX2-5 And GATA4 Cardiac Transcription Factor Genes In Malaysian Congenital Heart Disease Subjects” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Ahmad Fazli Abdul Aziz, MRCP (UK)
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mazeni Alwi, MRCP(UK)
Consultant paediatric cardiologist
Paediatric cardiology
National Heart Institute (IJN)
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted to any other degree at Universiti Putra Malaysia or at other institution.

NORA F. KADHIM

Date: 10 May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/ NOTATIONS/ GLOSSARY OF TERMS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of the study 1
1.2 Problem statement 4
1.3 Significance of the study 5
1.4 Research Hypothesis 6
1.5 Objectives
 1.5.1 General objective 7
 1.5.2 Specific objectives 7

2 LITERATURE REVIEW

2.1 Definition and classification of CHD
 2.1.1 Definition of CHD 8
 2.1.2 Classification of CHD 8
 2.1.3 Embryonic heart development 9
2.2 Causes of CHD
 2.2.1 Environmental or non-inherited factors 12
 2.2.2 Genetic or inherited factors 13
2.3 Single nucleotide sequence variants ”mutations and polymorphisms” 16
2.4 Genetic association studies 17
2.5 Hardy-Weinberg equilibrium (HWE) 18
2.6 Cardiac transcription factor genes 19
 2.6.1 TBX5 gene, protein structure and polymorphisms 21
 2.6.2 NKX2-5 gene, protein structure and polymorphisms 23
3 MATERIALS AND METHOD
3.1 Study design 37
3.2 Ethical approval and ethical considerations 37
3.3 Methodology flow chart 38
3.4 Study samples 39
3.4.1 Study subjects 39
3.4.2 Samples location 39
3.4.3 Sample size 39
3.4.4 Samples criteria 39
3.4.5 Sampling method 40
3.5 Duration of the study 42
3.6 Genomic DNA extraction 43
3.7 High Resolution Melting (HRM) analysis 43
3.7.1 Primer designing 44
3.7.2 Optimization of the reaction condition 46
3.7.3 HRM real-time PCR reaction mixture and reaction conditions 48
3.7.4 HRM data analysis 48
3.8 DNA sequencing 50
3.9 Data validation 52
3.10 Statistical analysis 53

4 RESULTS
4.1 Characteristics of cases respondents 54
4.1.1 Socio-demographic characteristics of the cases 55
4.1.2 Types of CHD included in the study 55
4.2 Characteristics of the Control Subjects 55
4.3 Optimization the PCR Reaction condition 56
4.4 Genotyping TBX5 gene polymorphism (rs11067075) 59
4.4.1 Genotypes and alleles frequencies of TBX5 gene Polymorphism (rs11067075) 60
4.4.2 Genotypic and allelic association of TBX5 gene polymorphism and CHD 62
4.4.3 Genotype-phenotype association

4.5 NXX2-5 gene polymorphism R25C (c.73C>T) genotyping

4.6 GATA4 gene mutation (G296S) genotyping

5 DISCUSSION

5.1 Socio-demographic characteristics

5.2 The association TBX5 gene polymorphism (rs11067075) with CHD

5.3 NXX2-5 gene polymorphism (R25C)

5.4 GATA4 gene mutation (G296S)

6 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Summary

6.2 Conclusion

6.3 Study limitation and future recommendation

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS