

UNIVERSITI PUTRA MALAYSIA

STATISTICAL MONITORING OF SUPPLIER PERFORMANCE IN A QUALITY MANAGEMENT SYSTEM ENVIRONMENT FOR THE IRANIAN AUTOMOTIVE INDUSTRY

SOROUSH AVAKH DARESTANI

FK 2010 106

STATISTICAL MONITORING OF SUPPLIER PERFORMANCE IN A QUALITY MANAGEMENT SYSTEM ENVIRONMENT FOR THE IRANIAN AUTOMOTIVE INDUSTRY

By

SOROUSH AVAKH DARESTANI

Thesis Submitted to School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for Degree of Doctor of Philosophy

July 2010

DEDICATION:

To

My beloved Father and Mother

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for degree of Doctor of Philosophy

STATISTICAL MONITORING OF SUPPLIER PERFORMANCE IN A QUALITY MANAGEMENT SYSTEM ENVIRONMENT FOR THE IRANIAN AUTOMOTIVE INDUSTRY

By

SOROUSH AVAKH DARESTANI

July 2010

Chair: Datin Napsiah Ismail, PhD Faculty: Engineering

Quality and delivery are two of the crucial indicators in today's automotive manufacturing industry. About 60% of prices of goods are allocated to raw material and purchased parts by suppliers in the automotive industry. The need for evaluation and monitoring of supplier's performance has been emphasized by previous researches and also in Quality Management System of the automotive industry ISO/TS16949. Thus, it is important to evaluate and monitor suppliers in the automotive sector. The review of literature reveals the lack of a multi-variable monitoring system for supplier performance. Therefore, this study was carried out with the aim to develop a multi-variable supply chain performance monitoring model for the automotive industry that would allow companies to monitor their suppliers' performance. Delivery Performance Monitoring Algorithm (DPMA) was developed for monitoring supplier's on-time-delivery (OTD) based on the PDCA approach.

In addition, control charts were also modelled for the OTD and Part per Million (PPM), while Binomial capability process (BCP) was done for measuring the PPM capability. Furthermore, the exploratory product audit method (PQAS) was developed based on normal distribution so as to quantify supplier's quality. For this purpose, the capability process analysis, Johnson transformation, Anderson-Darling normality test, time series prediction techniques were employed. The main contribution of this research is that statistical process control could be used to help automotive companies to monitor their supplier's performance. An investigation carried out on 344 consecutive deliveries performance of OEM's suppliers, in which the mean of OTD was obtained by 79.10 (where standard deviation was 18.77) gave the indication of far from customers' target by 90. Out of control signals were eliminated from the control charts. The capability study indicated that eliminating the out-of-control signals improved the supplier's capability.

Therefore, PQAS was performed and the supplier's quality level was obtained by 77%, indicating the causes of reducing product quality accordingly. The results also indicated that eliminating the out-of-control signals could enhance the product quality scores at significant level 5%. As such, the suppliers' quality rating PPM was quantified and monitored using the control chart and the results indicated that establishing the state of statistical control on the PPM could enhance the PPM capability in 6σ of binomial distribution. Thus, the results from the hypotheses testing significantly met the objectives of the study and the model could be employed by automotive sector. Undoubtedly, the implementation of statistical monitoring could increase organizational performance for both buyer and supplier perspectives.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PEMANTAUAN BERSTATISTIK PRESTASI PEMBEKAL DALAM PERSEKITARAN SISTEM PENGURUSAN KUALITI UNTUK INDUSTRI AUTOMOTIF IRAN

Oleh

SOROUSH AVAKH DARESTANI

Julai 2010

Pengerusi: Datin Napsiah Ismail, PhD

Fakulti: Kejuruteraan

Kualiti dan penghantaran adalah salah satu penunjuk penting dalam industri automotif sekarang. Lebih kurang 60% dari harga barangan terdiri dari bahan mentah dan bahagian yang dibeli dari pembekal dalam industri automotif. Keperluan kepada penilaian dan pemantauan prestasi pembekal memang terkandung dalam Sistem Pemgurusan Kualiti industri automotif ISO/TS 16949. Oleh sebab itu adalah penting untuk menilai dan memantau pembekal dalam sektor automotif.

Kajian literatur menunjukkan kurangnya sistem pemantauan pembolehubah berbilang untuk prestasi pembekal. Maka penyelidikan ini bertujuan untuk membangunkan model pemantauan prestasi pembolehubah berbilang rantaian bekalan untuk industri automotif yang akan membolehkan syarikat memantau prestasi pembekal mereka. Algoritme Pemantauan Prestasi Penghantaran (DPMA) telah dibangunkan untuk memantau penyerahan pembekal tepat masa (OTD). Carta kawalan telah dibangunkan untuk OTD dan PPM manakala proses kemampuan Binomial (BCP) untuk mengukur kemampuan PPM. Tambahan pula, suatu kaedah audit barang tinjauan (PQAS) telah dibangunkan untuk mengukur kualiti pembekal. Dalam konteks ini, kajian kemampuan proses, transformasi Johnson, ujian normal Anderson-Darling, ramalan siri masa dan teknik carta kawalan multivariate telah digunakan. Sumbangan utama dari penyelidikan ini telah memungkinkan kawalan proses berstatistik boleh digunakan untuk membantu syarikat automotif memantau prestasi pembekal mereka.

Kajian terhadap 344 prestasi penyerahan berturutan dari pembekal OEM mendapati purata OTD ialah 79.10 manakala sisihan piawai 18.77. Ini menunjukkan prestasi yang jauh dari harapan pelanggan.sebanyak 90. Signal luar kawalan telah dinyahkan dari carta kawalan. Kajian kemampuan menunjukkan bahawa, penyingkiran signal luar kawalan memperbaiki kemampuan pembekal. PQAS telah digunakan dan paras kualiti pembekal adalah pada 77% dan sebab pengurangan kualiti barangan dikenalpasti. Keputusan juga menunjukkan bahawa penyingkiran signal luar kawalan memperbaiki mata kualiti barangan pada paras bererti 5%. Dengan demikian rating kualiti pembekal (PPM) diukur dan dipantau melalui carta kawalan. Keputusan menunjukkan bahawa pembentukan rating kualiti pembekal (PPM) dalam 6 σ taburan Binomial. Tidak disangsikan lagi bahawa pelaksanaan pemantauan berstatistik dapat meningkatkan prestasi organisasi dari perspektif kedua dua pembeli dan pembekal.

ACKNOWLEDGEMENTS

In the name of Allah

I would like to acknowledge the source of all wisdom and the Creator of the world that we seek to investigate. God holds the keys to all wisdom to which our hardship is to discover.

Since I started my PhD study in 2005, I have had a great time in my life. I consider myself lucky to have had a work I really enjoy, and people around me that I like. There are several people I would like to dedicate my gratitude to. I have divided them into three categories.

The first category consists of my lecturers and friends in Universiti Putra Malaysia. The knowledge, especially experience and guidance of my esteemed supervisors are gratefully acknowledged here. The time we have spent together has resulted in a wonderful learning experience for me, thanks to my supervisory team, Professor Dr. Md.Yusof Ismail, Associate Professor Datin Dr. Napsiah Ismail and Associate Professor Dr. Rosnah Mohd. Yusuff. The second category consists my family and friends in Iran, who have supported me with their kindness and attention to me from far. I would like to thank my parents and my three brothers. The third category is my colleagues and friend in companies. They have helped me preparing my thesis and during data collection about this research.

SOROUSH AVAKH DARESTANI

July 2010

I certify that a Thesis Examination Committee has met on 2 July 2010 to conduct the final examination of Soroush Avakh Darestani on his thesis entitled "Statistical Monitoring of Supplier Performance in a Quality Management System Environment for the Iranian Automotive Industry" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Aidy b. Ali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Sapuan b. Salit, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Tang Sai Hong<mark>, PhD</mark>

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Bermawi P. Iskandar, PhD

Professor Institute Technology Bandung Fakultas Teknologi Industri Indonesia (External Examiner)

SHAMSUDDIN BIN SULAIMAN, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 September 2010

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. Members of the Supervisory Committee were as follows:

Datin Napsiah Ismail, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairperson)

Md. Yusof Ismail, PhD

Professor Faculty of Manufacturing Engineering Universiti Malaysia Pahang (Co-Supervisor)

Rosnah Mohd. Yusuff, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Co-Supervisor)

HASANAH MOHD GHAZALI, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 6 September 2010

DECLARATION

Hereby, I certify that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at Universiti Putra Malaysia or other institutions or universities.

TABLE OF CONTENTS

Page

DEDICATI ABSTRACT ABSTRAK ACKNOWI APPROVAI DECLARAT LIST OF TA LIST OF FI LIST OF A	ON F LEDGEMENTS L FION ABLES GURES BBREVIATIONS	ii iii v vii ix x xiv xv xv xviii
CHAPTER		
1	INTRODUCTION1.1Introduction1.2Background to the Study1.3Problem Statement1.4Contribution of the Research1.5Objectives1.6Hypotheses1.7Scope1.8The Structure of the Thesis	1 2 5 9 9 10 11 11
	 LITERATURE REVIEW 2.1 Introduction 2.2 Supply Chain Management (SCM) 2.2.1 Concept of Supply Chain Management 2.2.2 Supply Chain Management Models 2.2.3 Supply Chain Management Performance Measurement 2.2.4 Supply Chain Management Processes 2.5 The Role of Purchasing in SCM 2.2.6 Supplier Relationship Management (SRM) 2.2.7 Supplier Development and Performance Evaluation 2.8 Supplier Performance Monitoring 2.9 Performance Prediction 2.3 Quality Management System (QMS) 2.3.1 ISO/TS16949 2.3.2 Total Quality Management (TQM) 2.3.3 Monitoring of Key Performance Indicators of Process 2.3.4 Continual improvement (CI) 2.4 Statistical Quality Control (SQC) 2.4.1 Sampling Plans 2.4.2 Product Audit 2.4.3 Part Per Million (PPM) 2.4.4 Statistical Process Control (SQC) 	13 14 15 16 at 17 20 21 22 23 25 27 28 29 31 ses32 34 35 36 36 39 40
	2.5 Practices in Supplier Performance Monitoring	52

	2.6 Conclusion on Supply Performance, Statistical	
	Monitoring and QMS	56
3	ΜΕΤΗΟΡΟΙ ΟΩΥ	
5	3.1 Introduction	59
	3.2 Synchronization between SCM and OMS	60
	3.3 Research Structure	61
	3.4 Justification of Research Methodology	62
	3.5 Conceptual Model	64
	3.6 Comparison between the Current System and the New	
	monitoring System	69
	3.7 Measurement of Variables	70
	3.8 Plan-Do-Check-Act Perspective on MSCPM	72
	3.9 Sampling Procedure	74
	3.10 Control Chart Selection	75
	3.11 Normality Test	78
	3.12 Transformation on Data	79
	3.13 Test for Special Caused Signals	79
	3.14 Capability Analysis Methodology	81
	3.15 Prediction Supplier Performance	83
3.16 Multi-variable Supply Chain Performance Monitorin		
	(MSCPM)	83
	3.16.1 The Architecture of MSCPM	84
	3.16.2 Introduction to Delivery Performance Monitoring	
	Algorithm	85
	3.16.3 Modelling Delivery Indicator and Monitoring	
	Control Chart	95
	3.16.4 Modelling of PPM Control Chart	97
	3.16.5 Developing Binomial Process Capability Indices	99
	3.16.6 Measuring the Level of Quality Using the PQAS	101
	3.17 Validity and Reliability	111
	3.18 Conclusions	113
4	RESULTS AND DISCUSSION	
	4.1 Introduction	114
	4.2 The Analysis and Results of the OEM's Data	115
	4.3 Basic Statistics of the OEM's On-time Delivery	116
	4.4 Identification of the On-time Delivery Distribution	120
	4.5 Employing Johnson Transformation on	
	On-time Delivery Data	123
	4.6 The Normality Test Hypotheses	125
	4.7 Establishing the OTD Control Chart	127
	4.8 The Run Chart Tests for the OTD Data	129
	4.9 The Hypothesis Test for the Non-random	
	Pattern Recognition	131
	4.10 Stable Control Chart Stability	132
	4.11 Delivery Capability Analysis	135
	4.12 Prediction of Supplier Performance	138
	4.13 First-tier Performance Analysis	140
	4.13.1 The First-tier Suppliers' OTD Analysis	141

	4.13.2 Product Quality Audit Score Analysis	146
	4.13.3 The Part Per Million Analysis	152
4.14	Discussion of the On-time-delivery Results	157
4.15	Discussion of PQAS Results	160
4.16	Discussion of the PPM Results	162
4.17	Reliability	164
4.18	Areas of Great Emphasis and Contributions	164
4.19	Discussion on MSCPM	165

CONCLUSIONS AND RECOMMENDATIONS

5

	5.1	Introduction	168
	5.2	Conclusions for the Research Hypotheses	168
	5.3	Conclusion on MSCPM	170
	5.4	Conclusion for the Contributions of the Research	172
	5.5	Recommendation for the Automotive Industry	173
	5.6	Limitations of the Study	174
	5.7	Recommendations for Future Research	175
REFERE	ENCI	ES	176
ADDENI	NTYZ A		101

APPENDIX A	191
APENDIX B	196
APENDIX C	209
BIODATA OF STUDENT	210
LIST OF PUBLICATIONS	211