UNIVERSITI PUTRA MALAYSIA

SEISMIC ASSESSMENT AND STRENGTHENING OF EXISTING RESIDENTIAL REINFORCED CONCRETE BUILDINGS

SAMIRA JILANI KOJOURI

FK 2010 104
SEISMIC ASSESSMENT AND STRENGTHENING OF EXISTING RESIDENTIAL REINFORCED CONCRETE BUILDINGS

By

SAMIRA JILANI KOJOURI

Thesis submitted to School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirement for the degree of Master of Science

March 2010
DEDICATION

To my parents who have supported me patiently all the time

Thank you
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SEISMIC ASSESSMENT AND STRENGTHENING OF EXISTING RESIDENTIAL REINFORCED CONCRETE BUILDINGS

By

SAMIRA JILANI KOJOURI

March 2010

Chairman : Professor Abang Abdullah Abang Ali

Faculty : Engineering

The ability of assessment tools to forecast the vulnerability of buildings to prevent collapse during an earthquake is essential for existing buildings. Seismic vulnerability assessment techniques are classified as quick and exact assessment categories.

The aim of this study is to develop a numerical tool that can be used to evaluate existing reinforced concrete buildings against earthquake shaking. The vulnerability and retrofitting of low to medium rise reinforced concrete framed buildings (3, 4, 6 and 8 story) located in high zones of seismicity in Iran was carried out.

In order to reduce the time of assessment, a quick check of buildings is essential. To achieve this purpose a numerical tool has been proposed based on FEMA 310 (Tier 2 and 3) for RC framed buildings in earthquake prone areas.
Quick assessment methods do not have the ability to deduce the exact deficiencies of buildings. Nonlinear pushover analysis is a useful tool for the exact evaluation of existing buildings to give a good estimation of the overall displacement demands, base shears and plastic hinge formation. In order to determine the exact deficiencies of buildings the nonlinear static pushover analysis based on FEMA 356 was applied.

The computational procedure to calculate the base shear force according to FEMA 356 is complicated and most of the time the effect of P-Δ is not considered. To fulfil this objective a computer program was developed to consider the effect of P-Δ on two and three dimensional models of RC framed buildings, and the capacity curve was obtained as a result of the nonlinear static analysis.

The performance capacity level of RC framed buildings was found by idealizing the capacity curve. Hence the computer program developed idealizes the pushover curve according to FEMA 356. Consequently by using the developed program the buildings are evaluated in different performance levels. Results of pushover analysis were validated with the commercial software SAP2000.

Due to the lack of codes to design the new retrofitted members a design procedure for new retrofitted members of buildings is provided. Eventually the appropriate retrofit is suggested for vulnerable buildings and members.
The final results show that the quick assessment method is reliable at the global level. The pushover analysis is a useful tool to predict the failure mechanism of columns and beams in order to capture the exact assessment of buildings.

Results of the retrofitted buildings show that the chevron steel bracing are more appropriate than the shear wall and RC jacketing due to the increase in strength without an increase in the weight of buildings and need for retrofitting of the foundation. For brittle structures with very weak strength, additional shear walls will be appropriate while for brittle structures with mechanism of strong beams and weak columns, RC jacketing will be effective.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENILIAN SEISMIK DAN PENGULCUHAN BANGUNAN PERUMAHAN
KONKRIT BERTETULANG SEDIA ADA

Oleh

SAMIRA JILANI KOJOURI

March 2010

Pengerusi : Professor Abang Abdullah Abang Ali
Fakulti : Kejuruteraan

Keupayaan kaedah penilaian untuk meramalkan ketahanan bangunan bagi mengelakkan keruntuhan semasa gempa bumi adalah penting untuk bangunan sedia ada. Teknik penilaian ketahanan gempa dikelaskan sebagai kategori penilaian cepat dan tepat.

Tujuan kajian ini adalah untuk membina satu kaedah numerikal yang boleh digunakan untuk menilai bangunan konkrit bertetulang sedia ada terhadap gegaran gempa bumi. Ketahanan dan pengukuhan bangunan kerangka konkrit bertetulang berketinggian rendah dan sederhana (bangunan 3, 4, 6 dan 8) dijalankan di zon tinggi gempa bumi di Iran.

Bagi mengurangkan masa yang diperlukan untuk penilaian, satu semakan cepat untuk bangunan adalah penting. Untuk mencapai tujuan ini satu kaedah numerical
telah dicadangkan berdasarkan FEMA 310 (Tingkat 2 dan 3) untuk bangunan kerangka konkrit bertetulang di kawasan kejadian gempa bumi.

Kaedah penilaian cepat tidak mempunyai keupayaan untuk menilai kekurangan yang tepat untuk bangunan. Analisis pushover tidak linear adalah kaedah berguna untuk penilaian sebenar bangunan sedia ada bagi memberi anggaran yang baik untuk keperluan ubahbentuk keseluruhan, ricih tapak dan pembentukan engsel plastik. Bagi menentukan kekurangan yang tepat sesuatu bangunan analisis pushover statik tidak linear berdasarkan FEMA 356 digunakan.

Prosedur komputeran untuk mengira daya ricih tapak berdasarkan FEMA 356 adalah rumit dan kebanyakan waktu kesan P-Δ tidak diambil kira, bagi memenuhi objektif satu komputer program telah dibangunkan untuk mengambil kira kesan P-Δ terhadap model dua dan tiga dimensi bangunan kerangka konkrit bertetulang, dan lengkung kapasiti diperolehi sebagai keputusan analisis statik tidak linear.

Disebabkan kurangnya kod untuk merekabentuk pengukuh baru anggota satu prosedur rekabentuk untuk pengukuh baru anggota bangunan telah disediakan.
Akhirnya pengukuh yang sesuai dicadangkan untuk ketahanan bangunan dan anggota.

Keputusan akhir menunjukkan bahawa kaedah penilaian cepat adalah boleh dipercayai pada peringkat global. Analisis pushover adalah satu kaedah yang berguna untuk meramal mekanisme kegagalan tiang dan rasuk dalam mendapatkan penilaian tepat sesebuah bangunan.

Keputusan pengukuhan bangunan menunjukkan yang penahan keluli chevron adalah lebih bersesuaian dibandingkan dengan dinding ricuh dan jaket konkrit bertetulang disebabkan peningkatan kekuatan tanpa peningkatan dalam berat bangunan dan mengukuhkan asas. Bagi struktur yang tidak rapuh dengan kekuatan yang sangat lemah, dinding ricuh tambahan diperlukan manakala bagi struktur tidak rapuh dengan mekanisme rasuk yang kuat dan tiang yang lemah, jaket konkrit bertetulang akan lebih efektif.
ACKNOWLEDGEMENT

First of all, I would like to express my greatest gratitude to ALLAH Almighty, for His help and support during the course of life and the moment of truth.

I would like to express my appreciation and sincere gratitude to my supervisor, Prof. Abang Abdullah Abang Ali and Dr Jamaloddin Noorzaei for their continuous support. These special thanks also dedicate to Dr. Mohd Saleh Jaafar and Dr. Anwar for their invaluable guidance and constructive criticisms throughout the success of this project.

I would like to express my appreciation to my family for being there at all times and for their support and encouragement with my research.

I would like to thank to all my colleagues from Structural Lab for their support and encouragement. Working with all of you is a good experience that could never be forgotten.
I certify that an Examination Committee has met on to conduct the final examination of SAMIRA JILANI KOJOURI on her MASTER OF SCIENCE thesis entitled "SEISMIC ASSESSMENT AND STRENGTHENING OF EXISTING RESIDENTIAL REINFORCED CONCRETE BUILDINGS" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

, PhD
Associate Professor
Faculty of Engineering
Universiti (External Examiner)

Bujang Bin Kim Huat
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abang Abdullah Abang Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Jamaloddin Noorzaei, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Saleh Jaafar, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 July 2010

xi
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

SAMIRA JILANI KOJOURI

Date: 10-Jan-2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1 Background
1.2 Problem Statement
1.3 Research Objectives
1.4 Scope of Work
1.5 Thesis Layout

2. LITERATURE REVIEW

2.1 Introduction
2.2 History and Background of Assessment of Buildings
2.3 Quick Assessment of RC Buildings
2.3.1 Damage Probability Matrices
2.3.2 Vulnerability Index Method
2.3.3 Continuous Vulnerability Curves
2.3.4 Screening Methods
2.3.5 Existing Code Provision for Assessment of RC Building
2.4 Exact Assessment of RC Buildings
2.4.1 Pushover Analysis Method and the Application in Assessment of Buildings
2.5 Retrofitting
2.5.1 Additional Bracing
2.5.2 Jacketing
2.5.3 Additional Shear Wall
2.6 Discussion
2.7 Proposed Problem
2.8 Concluding Remarks

3. METHODOLOGY

3.1 Introduction

xiii
3.2 Quick Assessment 58
 3.2.1 Region of Seismicity 59
 3.2.2 Quick Assessment Procedure 62
 3.2.3 Quick Checks for Strength and Stiffness 69
3.3 Exact Assessment of Residential RC Building 71
 3.3.1 Non Linear Static Pushover Analysis 73
 3.3.2 Choice of Rehabilitation Objectives 74
 3.3.3 Data Collection Requirements 76
 3.3.4 The Seismic Hazard 77
 3.3.5 Pseudo Lateral 81
 3.3.6 Control Node Displacement 84
 3.3.7 The Gravity Loading and the Vertical Distribution of the Lateral Loads 86
 3.3.8 Pushover Curve 85
 3.3.9 Calculation of the Target Displacement 87
3.4 Structural Modeling of Frame 87
 3.4.1 Mathematical Model 87
 3.4.2 Analytical Modeling of RC Frame Member 88
 3.4.3 Stiffness Matrix of Frame Element 89
 3.4.4 Elasto-Plastic Stiffness Properties 93
 3.4.4.1 Yield Function 93
 3.4.4.2 Plastic Deformation 94
 3.4.5 Computation of Nonlinear Static Analysis for Frame Elements 95
 3.4.6 Convergence Criterion 98
3.5 Idealize the Pushover Curve 98
3.6 Retrofitting 102
 3.6.1 Additional Chevron Brace 102
 3.6.2 Additional Shear Wall 103
 3.6.3 RC Jacketing of Columns 106
3.7 Concluding Remarks 109

4. RESULTS AND DISCUSSIONS 110

 4.1 Introduction 110
 4.2 Collection of Data 111
 4.2.1 Material Properties 112
 4.2.2 Details of Existing Buildings 113
 4.2.3 The Seismic Hazard 123
 4.2.4 Loading 125
 4.3 Structural Vulnerability of the RC Buildings Based on Quick Assessment Procedure 126
 4.3.1 Seismic Lateral Loading 126
 4.3.2 Three-Story Residential RC Building 128
 4.3.3 Four-Story Residential RC Building 130
 4.3.4 Six-Story Residential RC Building 132
 4.3.5 Eight-Story Residential RC Building 134
 4.4 Exact Assessment of Existing RC Building Using Pushover Analysis 136
4.4.1 The seismic hazard 136
4.4.2 Pushover Analysis of Three-Story building 137
4.4.3 Pushover Analysis of Four-Story Building 147
4.4.4 Pushover Analysis of Six-Story Building and Retrofitting 153
 4.4.4.1 Additional Braces 159
 4.4.4.2 RC Jacketing 160
4.4.5 Pushover Analysis of Eight-Story Building and Retrofitting 165
 4.4.5.1 Additional shear wall to Eight-Story Building 172
 4.4.6 Validation the Results with SAP2000 177
4.5 Concluding Remarks 180

5 SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE
RESEARCH 182
 5.1 Conclusions 182
 5.2 Recommendation for future works 185

REFERENCES 186
APPENDICES A.1
BIODATA OF STUDENT G.1
LIST OF PUBLICATIONS H.1