MODELING OF 132 KV SUBSTATION FOR INSULATION COORDINATION

By

MOHD HATTA BIN MOHAMMED ARIFF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2010
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MODELING OF 132 kV SUBSTATION FOR INSULATION COORDINATION

By

MOHD HATTA BIN MOHAMMED ARIFF

January 2010

Chairman: Dr. Mohd Zainal Abidin bin Ab. Kadir

Faculty: Engineering

Substation is an essential part of the grid systems which often regarded as the most expensive component in the power systems. In general, insulation coordination studies are an important and are used to determine the reliability of the substation. In most blueprints, the default design of a substation always being designed to have an absolute protections where all the possible stresses had already put into account according to the applied standard which sometimes being overprotected and expensive. The intention of this work is to model an existing substation in the way to investigate its design capability to withstand the excessive transient overvoltage (i.e. lightning surge), in an attempt to have a more cost effective design model. The selected substation model is adopted from a 132 kV Simpang Renggam-Ayer Hitam substation. The substation is modeled using PSCAD/EMTDC software and the substation drawing details has been courteousness provided by the Tenaga Nasional Berhad (TNB). Throughout the model, several issues have been addressed and carried out in this study regarding the optimization of the substation design. Issues such as arrester placement strategies, determination of transformer breakdown current, arrester placement distance, as well as the energy handling capability for the
arrester have been investigated. The findings unveil that, proper placement of arrester is crucially needed in order to optimize the substation performance in term of its reliability and cost effective. Besides that, the determination of current level associated to the breakdown of the transformer, could help the engineers to estimate the capability of the protection scheme in a way to improve the design. Moreover, the development of energy within the arrester which could cause the reduction of protection scheme potential is not only due to the magnitude of the stress current, but also influenced by other factors such as stress waveform durations and the geographical location of the substation. Finally, the highlight of this work is basically through the development of the substation model via PSCAD. It has become an alternative option for researchers to conduct various investigations in subject to substation design improvement and insulation coordination studies.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan Ijazah Sarjana Sains

MEMODEL PENCAWANG UTAMA 132 kV UNTUK KAJIAN KOORDINASI PENEBATAN

Oleh

MOHD HATTA BIN MOHAMMED ARIFF

Januari 2010

Pengerusi: Dr. Mohd Zainal Abidin bin Ab. Kadir

Fakulti: Fakulti Kejuruteraan

Pencawang utama merupakan satu bahagian penting dalam sistem grid di mana ianya dianggap sebagai komponen yang termahal dalam sistem kuasa. Secara amnya, kajian koordinasi penebatan adalah penting dan ianya digunakan untuk menentukan prestasi kebolehpercayaan bagi sesebuah pencawang utama. Dalam kebanyakan pelan rangka tindak, rekaan asal bagi pencawang biasanya direka supaya mempunyai perlindungan yang mutlak di mana semua kemungkinan bagi berlakunya tegasan telah diambil kira berdasarkan piawai yang diterimapakai yang mana kadangkala ianya memberikan perlindungan yang terlampau dan mahal dari segi kos pembinaannya. Tujuan kajian ini adalah untuk memodel semula pencawang utama yang sedia ada bagi mengkaji kemampuan rekaan asal untuk menangani voltan lampau fana seperti pusuan kilat yang berlebihan dalam usaha untuk menghasilkan satu model rekaan yang lebih berkesan dari segi kos. Model pencawang utama yang dipilih telah diambil dari pencawang utama 132 kV yang menghubungkan antara Simpang Renggam-Ayer Hitam. Pencawang utama ini telah dimodel semula dengan menggunakan perisian PSCAD/EMTDC dan maklumat perincian bagi pelan rekaan
telah disumbangkan oleh ehsan dari Tenaga Nasional Berhad (TNB). Menerusi model tersebut, beberapa isu telah disenaraikan dan dibawa bersama kajian yang berkaitan dengan mengoptimumkan rekaan pencawang utama. Isu-isu seperti strategi menentukan kedudukan penangkap pusuan, penentuan tahap arus yang merujuk kepada sebelum terjadinya kerosakan pada pengubah, jarak kedudukan penangkap pusuan dan juga keupayaan penangkap pusuan mengendali tenaga yang terjana di dalamnya telah dikaji. Keputusan dari kajian mendapati bahawa strategi meletakkan pengangkap pusuan yang kedudukan sesuai adalah penting bagi mengoptimumkan tahap prestasi pencawang utama dari segi kebolehpencerayaan dan kos keberkesanannya. Selain itu, menentukan tahap arus yang merujuk kepada sebelum terjadinya kerosakan pada pengubah juga boleh membantu jurutera untuk menganggar kebolehan skema perlindungan dalam usaha memantapkan lagi sesuatu rekaan. Tambah lagi, tenaga berlebihan yang terhasil di dalam penangkap pusuan dimana ianya boleh merendahkan potensi skema perlindungan, bukan hanya disebabkan oleh tahap arus tegasan yang tinggi, tetapi ianya juga dipengaruhi oleh faktor-faktor seperti tempoh gelombang tegasan dan lokasi geografik bagi pencawang utama tersebut. Akhir sekali, sumbangan terpenting dalam kajian ini adalah menerusi penghasilan model pencawang utama dengan menggunakan PSCAD. Ianya menjadi pilihan alternatif bagi pengkaji untuk menjalankan kajian-kajian lain dalam usaha memantapkan rekaan pencawang utama dan juga kajian koordinasi penebatan.
ACKNOWLEDGEMENTS

I wish to thank to my supervisor, Dr. Mohd Zainal Abidin Abdul Kadir who has given invaluable guidance and supervision throughout the study. Thanks to Co-supervisor Dr. Hashim Hizam as well as the committee members for guidance, tips, comments, criticisms and suggestion during this study.

My endless gratitude and deepest appreciation also goes to my family for their unfailing support, love and encouragement. Without them I may not come this far in my education.

Special thanks also dedicated to Tenaga Nasional Berhad Malaysia (TNB) for their support of providing significant information’s and data’s which is vital in conducting the study.

Also thanks to Universiti Teknologi Malaysia for the financial support and lastly, special credits to all my friends and other lecturers for their advice and support. I am indebted to all of you.
APPROVAL

I certify that a Thesis Examination Committee has met on 27 January 2010 to conduct the final examination of Mohd Hatta bin Mohammed Ariff on his thesis entitled “Modeling of 132 kV Substation for Insulation Coordination” in accordance with Universities Colleges Act 1971 and Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Norman Mariun, Phd
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Senan Mahmod Abdullah, Phd
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Norhisam Misron, Phd
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ismail Musirin, Phd
Associate Professor
Faculty of Electrical Engineering
Universiti Teknologi Mara
Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 May 2010
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd. Zainal Abidin Ab. Kadir, PhD
Faculty of Engineering
University Putra Malaysia
(Chairman)

Hashim Hizam, PhD
Faculty of Engineering
University Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 June 2010
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, or is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

MOHD HATTA BIN MOHAMMED ARIFF

Date: January 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General 1
1.2 Insulation Coordination 1
 1.2.1 Substation insulation coordination 3
 1.2.2 Basic lightning insulation level (BIL) 4
1.2.3 Lightning protection 5
1.3 Problem statement 5
1.4 Contribution of the research 8
1.5 Objectives 9
1.6 Scope of study 9
1.7 Thesis overview 10

2 THEORETICAL BACKGROUND

2.1 Introduction 11
2.2 Types of overvoltages 11
 2.2.1 Lightning overvoltage 12
2.3 Lightning phenomenon 13
 2.3.1 Types of lightning flashes 13
 2.3.2 Lightning in Malaysia 14
2.4 Substations 15
 2.4.1 Substation protections 17
 2.4.2 Shielding techniques 18
 2.4.3 Surge arrester 20
 2.4.3.1 Surge arrester test waveform and energy development 21
 2.4.4 Separation distance 23
 2.4.5 Safety clearance 24
2.5 Backflashover (BFO) 25
2.6 Overhead lines 27
2.7 Summary 30

3 LITERATURE REVIEW

3.1 Introduction 31
3.2 Modeling 31
 3.2.1 Lightning model 31
 3.2.2 Lightning waveform model 32
3.2.3 Tower modeling 33
3.2.4 Tower footing resistance 34
3.2.5 Surge arrester modeling 35
3.2.6 Substation modeling 38
3.2.7 Overhead transmission line model 39

3.3 Summary 41

4 METHODOLOGY
4.1 Introduction 42
4.2 Modeling parameters 45
 4.2.1 Lightning parameters 45
 4.2.2 Lightning waveform model 47
 4.2.3 Transmission tower 49
 4.2.4 Tower model 51
 4.2.5 Tower footing resistance 53
 4.2.6 Footing resistance model 54
 4.2.7 Substation modeling 55
 4.2.8 Surge arrester model 57
 4.2.9 Surge arrester model parameters 59
 4.2.10 Overhead lines model parameters 60
4.3 PHASE 1: Savic’s simulation model 61
 4.3.1 PSCAD substation model using Savic’s simulation model 64
4.4 PHASE 2: Development of TNB’s 132 kV substation simulation model 65
 4.4.1 132 kV Simpang Renggam-Ayer Hitam substation 65
4.5 Experimental setup and studied cases 67
 4.5.1 Simulation parameters summary 68
 4.5.2 Substation model parameters 68
 4.5.3 Overhead lines and tower model parameters 70
 4.5.4 Surge arrester model parameters 71
4.6 CASE STUDY 1: Arrester placement 71
4.7 CASE STUDY 2: Determination of arrester breakdown current 72
4.8 CASE STUDY 3: The effect of arrester placement distance 72
4.9 CASE STUDY 4: Arrester energy 74
 4.9.1 Current wave shape study 77
 4.9.2 Geographic location study 78
4.10 Summary 79

5 RESULTS AND DISCUSSIONS
5.1 Introduction 80
5.2 Results: Savic’s simulation model (PHASE 1) 80
5.3 CASE STUDY 1 (Arrester Placement) 83
 5.3.1 Sub-case (i): Results 83
 5.3.2 Sub-case (ii): Results 85
 5.3.3 Sub-case (iii): Results 86
 5.3.4 Sub-case (iv): Results 88
 5.3.5 Case comparison at selected current, I 91
 5.3.6 I-V characteristics: Sub-case (iv) 93
5.4 CASE STUDY 2 (Determination of the surge arrester breakdown current) 94
5.5 CASE STUDY 3 (The effect of arrester placement Distance) 96
5.6 CASE STUDY 4 (Arrester Energy) 98
 5.6.1 Part 1: Current wave shape study 98
 5.6.1a Results (Part 1): Energy response (8/20µs: Standard current wave shape) 98
 5.6.1b Results (Part 1): Energy responses (Different current wave shapes) 99
 5.6.1c Results (Part 1): Failure probability (8/20 µs: Standard current waveform) 101
 5.6.1d Results (Part 1): Failure probability (Different current wave shapes) 102
 5.6.2 Part 2: Geographic location study 103
 5.6.2a Results (Part 2): Arrester’s voltage, current and energy response 103
 5.6.2b Results (Part 2): Failure probability (Variation of R_s and rho, ρ) 106
5.7 Summary 108

6 CONCLUSIONS AND FUTURE WORK 109
 6.1 Conclusions 109
 6.2 Recommendation and future work 114

REFERENCES 115
APPENDIX A: Allowable separation distance and clearance for practice 120
APPENDIX B: Calculation of surge arrester separation distance 123
APPENDIX C: Surge arrester specification data sheet 127
APPENDIX D: Substation layout drawing 135
APPENDIX E: PSCAD simulation design model 139
APPENDIX F: Surge capacitance estimation 147
BIODATA OF STUDENT 154
LIST OF PUBLICATIONS 155