EFFECTS OF COCOA POLYPHENOL-RICH EXTRACT ON THE
PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA
EXPRESSION IN ADIPOSE AND SKELETAL MUSCLE TISSUE OF OBESE
DIABETIC RATS

FARHANA BINTI AMINUDDIN

FPSK(m) 2012 23
EFFECTS OF COCOA POLYPHENOL-RICH EXTRACT ON THE
PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA
EXPRESSION IN ADIPOSE AND SKELETAL MUSCLE TISSUE OF OBESE
DIABETIC RATS

FARHANA BINTI AMINUDDIN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2012
EFFECTS OF COCOA POLYPHENOL-RICH EXTRACT ON THE
PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA
EXPRESSION IN ADIPOSE AND SKELETAL MUSCLE TISSUE OF OBESE
DIABETIC RATS

By

FARHANA BINTI AMINUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Master of Science

December 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF COCOA POLYPHENOL-RICH EXTRACT ON THE PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA EXPRESSION IN ADIPOSE AND SKELETAL MUSCLE TISSUE OF OBESE DIABETIC RATS

By

FARHANA BINTI AMINUDDIN

December 2012

Chair: Professor Amin Ismail, PhD

Faculty: Medicine and Health Sciences

Theobroma cacao bean is known to have potential anti-obesity and anti-diabetic activities because of its bioactive phytochemicals and their antioxidant capacities. An oral administration of cocoa polyphenols-rich extract (CoPE) (600 mg/kg daily) containing high phenolic (129.877 ± 0.06 mg/ g cocoa extract) and flavonoid (118.92 ± 0.01 mg/g cocoa extract) contents was given to obese-diabetic (Ob-db) induced rats tend to minimize type 2 diabetic condition in 8-weeks of time. As compared to the obese-diabetic (Ob-db) group, increment in body weight and plasma glucose were significantly suppressed for Ob-db with CoPE supplementation. Improvement in lipid profile parameters was also observed with a decrease in total cholesterol (TC), triglyceride (TAG), low density lipoprotein cholesterol (LDL-c), and an elevation in high density lipoprotein cholesterol (HDL-c) levels. However, there was no significant difference in insulin level after 8-weeks of CoPE administration. Oral glucose tolerance test revealed that cocoa supplementation to Ob-db rats significantly
reduced plasma glucose at 60 min by 18% compared to unsupplemented Ob-db rats ($p < 0.05$).

The effects of CoPE on the expression of PPAR-γ in adipose tissues and skeletal muscle of Ob-db rats were also evaluated. PPAR-γ known as a key gene regulator for diabetes, and became our interest in improving the status of diabetic condition in Ob-db rat’s model supplemented with cocoa bean extract. The regulation of target genes by PPAR-γ activation induces glucose homeostasis, lipid metabolism and adipogenesis. Results from Immunoblotting protein expression showed an overexpression of PPAR-γ in both adipose tissue and skeletal muscle of Ob-db rats supplemented with CoPE. In addition, qRT-PCR results demonstrated that CoPE enhanced PPAR-γ mRNA expression in both adipose tissue and skeletal muscle by 10-fold and 6-fold respectively. However, Ob-db group also showed an increased expression of protein and mRNA PPAR-γ because of the high levels of free-fatty acids presence that forming a natural PPAR-γ ligand without improved any status of diabetic condition.

The results suggest that the anti-diabetic activity of CoPE may result from improvement of glucose level, lipid profiles and weight gain. Insulin sensitivity also been improved as assessed by HOMA-IR status. To gain insight, major polyphenol compounds found in CoPE (catechin, epicatechin, caffeine, theobromine and theophylline) might form an active PPAR-γ ligand binding. Thus, the findings may provide a scientific rationale through potential mechanism for the natural anti-diabetic action of CoPE through PPAR-γ activation. In addition, PPAR-γ activation by CoPE could play a central role in lipid and glucose homeostasis. Thus, the
findings indicated that PPAR-\(\gamma\) is one of a molecular target for CoPE by revealing the mechanism of action in the treatment of type 2 diabetes mellitus, hence suggest that CoPE would be effective in preventing and/or ameliorating the metabolic syndrome.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

KESAN EKSTRAK KOKO YANG KAYA DENGAN POLIFENOL TERHADAP EKSPRESI PPAR GAMMA DALAM TISU LEMAK DAN OTOT TIKUS GEMUK YANG MENGHIDAP KENCING MANIS

Oleh

FARHANA BINTI AMINUDDIN

Disember 2012

Pengerusi: Profesor Amin Ismail, PhD

Fakulti: Perubatan dan Sains Kesihatan

Biji Theobroma cacao dipercayai mempunyai potensi ke atas aktiviti anti-obesiti dan anti-diabetes kerana fitokimia bioaktif dan kapasiti antioksidan mereka. Pengambilan ekstrak koko yang kaya dengan polifenol (CoPE) (600 mg / kg setiap hari) yang tinggi dengan kandungan fenolik (129.877 ± 0.06 mg / g koko ekstrak) dan flavonoid (118.92 ± 0.01 mg / g koko ekstrak) oleh tikus gemuk yang menghidap diabetes (Ob-db) telah mengurangkan kesan kencing manis jenis 2 dalam masa 8 minggu. Jika dibandingkan dengan kumpulan obes-diabetes (Ob-db), kenaikan berat badan dan paras glukosa darah adalah ketara dalam tikus Ob-db yang mendapat rawatan CoPE. Perubahan ke atas profil lipid juga telah dikenalpasti dengan penurunan jumlah kolesterol (TC), trigliserida (TAG), kolesterol lipoprotein ketumpatan rendah (LDL-c), serta peningkatan dalam kolesterol lipoprotein ketumpatan tinggi (HDL-c). Walau bagaimanapun, terdapat perbezaan yang ketara pada tahap insulin selepas 8-minggu pengambilan CoPE. Ujian toleransi glukosa oral membuktikan bahawa pengambilan CoPE ke atas tikus Ob-db telah menurunkan paras glukosa darah pada 60 min
sebanyak 18% berbanding dengan tikus Ob-db yang tidak dirawat (p <0.05).

Kesan CoPE pada unggkapan PPAR γ ke atas tisu adipo dan otot rangka tikus Ob-db juga dikaji. PPAR-γ dikenali sebagai pengatur gen utama untuk penyakit kencing manis, dan menjadi kepentingan untuk meningkatkan status penyakit diabetes mellitus dalam tikus Ob-db yang dirawat dengan ekstrak biji koko. Pengaktifan PPAR-γ mendorong aktiviti homeostasis glukosa, metabolisme lipid dan adipogenesis. Keputusan dari Immunoblotting unggkapan protein menunjukkan peningkatan ekspresi PPAR-γ dalam kedua-dua tisu adipo dan otot rangka tikus Ob-db yang dirawat dengan CoPE. Di samping itu, keputusan qRT-PCR menunjukkan bahawa CoPE meningkatkan unggkapan PPAR-γ mRNA dalam kedua-dua tisu adipo dan otot rangka dengan masing-masing 10 dan 6-kali ganda masing-masing. Walau bagaimanapun, kumpulan Ob-db juga menunjukkan peningkatan unggkapan PPAR-γ protein dan mRNA disebabkan oleh kehadiran asid lemak bebas yang tinggi yang membentuk pelengkap semulajadi kepada PPAR-γ tanpa memperbaiki status penyakit diabetes mellitus jenis 2.

Hasil kajian mencadangkan bahawa aktiviti anti-diabetes oleh CoPE meningkatkan paras glukosa, profil lipid dan berat badan. Sensitiviti insulin juga telah menunjukkan pertambahan yang baik seperti yang dinilai oleh status HOMA-IR. Sebatian polifenol yang ditemui dalam CoPE (catechins, epicatechin, kafein, teobromina dan teofilin) mungkin boleh membentuk PPAR-γ pelengkap yang aktif untuk mengikat. Oleh itu, penemuan kajian boleh menyediakan rasional saintifik melalui mekanisme yang berpotensi untuk tindakan semulajadi anti-diabetes melalui pengaktifan PPAR-γ. Di samping itu, pengaktifan PPAR-γ oleh CoPE boleh memainkan peranan penting...
terhadap homeostasis lipid dan glukosa. Oleh itu, kajian menunjukkan bahawa PPAR-\(\gamma\) adalah satu sasaran molekular untuk CoPE dengan membuktikan tindakan mekanisme dalam rawatan diabetes mellitus jenis 2, dan dengan itu mencadangkan bahawa CoPE berkesan dalam mencegah dan / atau memperbaiki sindrom metabolik.
ACKNOWLEDGEMENTS

All praises and thanks to almighty ALLAH SWT, the most merciful, for the blessing and strength to complete this study.

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Amin Ismail for his invaluable advice, support, encouragement, patience and understanding that made this study possible. Not forgetting, supervisory committee members, Assoc. Prof. Dr. Chong Pei Pei and Assoc. Prof. Dr. Muhajir Hamid for their constructive comments during the on-going research work and the preparation of this thesis.

I am sincerely grateful to the financial support by Ministry of Science, Technology and Innovation of Malaysia (National Science Foundation). Special thanks are extended to all members of the Laboratory of Nutrition at Faculty of Medicine and Health Sciences, UPM, Mr. Hasbullah, Mdm. Che Maznah, Mr. Simon and Mr Ramli for their assistance and tremendous help in laboratory work. Not to forget, Dr Cheah Yoke Kqueen for his guidance while doing a RNA work and Ms. Azreen for her guidance in doing protein and RNA analysis.

My heartfelt thanks are also extended to my friends Nurul Nadirah, and Nurul Zarith for their help and support towards the completion of this thesis. And a million thanks to my father, mother, brothers and sister for their love, support and inspiration throughout the period of my study in UPM and my entire life. Lastly, a thousand thanks to all member in POLAR group.
I certify that an Examination Committee has met on 3 December 2012 to conduct the final examination of Farhana Binti Aminuddin on her thesis entitled “Effects of Cocoa Polyphenol-rich Extract on the Peroxisome Proliferator-Activated Receptor Gamma Expression in Adipose and Skeletal Muscle of Obese Diabetic Rats” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee are as follows:

Asmah binti Rahmat, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Loh Su Peng, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wan Rosli bin Wan Ishak@Wan Ahmad, PhD
Professor
School of Health Sciences
Universiti Sains Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 March 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

FARHANA BINTI AMINUDDIN
Date: 3 December 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS/ANNOTATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Research Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Statements of Problem</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3 Significance of the Study</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.4 Objectives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Diabetes mellitus</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1.1 History of diabetes mellitus</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Classification of diabetes</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Risk factors of developing diabetes</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Signs and symptoms of diabetes</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Diagnosis of diabetes</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.1.6 Medication of diabetes</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2 Cocoa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1 Background of cocoa</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Health benefits of cocoa and cocoa products</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Bioactive compounds in cocoa and cocoa products</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.3 Peroxisome proliferator-activated receptor (PPAR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.1 PPARs and their expression</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Role of PPAR-γ in fighting diseases</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Novel therapeutic application of TZDs as PPAR-γ agonist</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Natural sources as PPAR-γ agonist</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.3.5 PPAR-γ protein and mRNA expression</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.3.6 Detection of PPAR-γ gene expression by RT-PCR</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.4 Association of PPAR-gamma and Diabetes Mellitus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.1 Gene variants</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Genetic basis of Type 2 Diabetes Mellitus</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.4.3 PPAR-γ and insulin resistance</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.4.4 Gene profiling of PPAR-γ ligands</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2.4.5 Potential impact on public health and other Implications.</td>
<td>47</td>
</tr>
</tbody>
</table>

xii
3 MATERIALS AND METHODS

3.1 Properties of cocoa bean extract and HPLC analysis

3.1.1 Preparation of cocoa extract 48
3.1.2 Determination of bioactive compounds 49
3.1.3 Determination of total phenolic content 50
3.1.4 Determination of total flavonoid content 50
3.1.5 Ferric reducing antioxidant power assay 51
3.1.6 2,2-diphenyl-2-picrylhydrazyl radical scavenging assay 51

3.2 Effects of cocoa polyphenols-rich extract
Supplementation on blood glucose and lipid profiles of Ob-db rats model

3.2.1 Animal study 52
3.2.2 Oral glucose tolerance test 57
3.2.3 Blood collection for biochemical analysis 57
3.2.4 Determination of lipid profiles, plasma glucose, insulin levels 58
3.2.5 Homeostasis model assessment of insulin resistance index 58

3.3 Expression of PPAR-γ protein and mRNA on adipose tissue and skeletal muscle of Ob-db rats supplemented with CoPE

3.3.1 Protein extraction 59
3.3.2 Bicinchoninic acid assay 59
3.3.2 SDS-PAGE electrophoresis and western blot 60
3.3.3 Total RNA extraction 61
3.3.4 RNA quality assessment 62
3.3.5 Quantitative real-time PCR 62

3.4 Statistical analysis 63

4 RESULTS AND DISCUSSIONS

4.1.1 Bioactive compounds in cocoa extract 64
4.1.2 Total phenolics and flavonoid content 66
4.1.3 Ferric reducing activity based on FRAP assay 68
4.1.4 Scavenging activity on 2,2-diphenyl-2-picrylhydrazyl radical 73

4.2.1 Effects of Cocoa Polyphenols-Rich Extract in Body weight, BMI and food intake of experimental rats 75
4.2.2 Oral glucose tolerance test 78
4.2.3 Glucometabolism parameters and lipid profiles 82

4.3.1 Expression of PPAR-γ protein in adipose tissue 91
4.3.2 RNA integrity 97
4.3.3 Expression of PPAR-γ mRNA in adipose tissue and skeletal muscle 100
5 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Summary and General Conclusions 111
5.2 Limitation of Study and recommendations of future research 114

REFERENCES 116
APPENDICES 139
BIODATA OF STUDENT 146
LIST OF PUBLICATIONS 147