UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF OPTIMISED MODEL FOR POLYETHYLENE INFRASTRUCTURE MONITORING USING MOBILE LASER SCANNING TECHNIQUE

MAHMOUD FAWZI AL-HADER

ITMA 2011 22
DEVELOPMENT OF OPTIMISED MODEL FOR POLYETHYLENE INFRASTRUCTURE MONITORING USING MOBILE LASER SCANNING TECHNIQUE

By

MAHMOUD FAWZI AL-HADER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2011
Abstract of thesis presented to the Senate of University Putra Malaysia in Fulfilment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF OPTIMISED MODEL FOR POLYETHYLENE INFRASTRUCTURE MONITORING USING MOBILE LASER SCANNING TECHNIQUE

By

MAHMOUD FAWZI AL-HADER

September 2011

Chairman: Associate Professor Ahmad Rodzi Mahmud, PhD

Faculty : Institute of Advanced Technology

The daily infrastructure networks’ updates are very huge due to frequent new installations, replacements and enforcements which are subject to maintenance and operation on a frequent basis. The efficiency of the maintenance and operation workflow is strongly related to the geographical location of these infrastructure networks. Due to the huge daily updates of the infrastructure networks, the ability of collecting the updated locations using the current geospatial monitoring techniques is very difficult. This research brought forward a more efficient geospatial data updating technique for the infrastructure networks. The monitoring is needed to geospatially locate and update the physical infrastructure development which significantly enhances the performance of managing and maintaining the infrastructure assets.
The research concentrates on the polyethylene infrastructure materials, where power, water and communication networks are either covered or protected by polyethylene materials. The research conducted a technical comparison between the current geospatial data collection techniques and developed an overall performance evaluation in the sense of coverage capacity, objects extraction, data formats, time initialization of the systems and post processing time consumption. The use of mobile laser scanning technology had achieved the best evaluation performance. The evaluations were based on conducting a detailed data analysis, data collection, modelling and interpretation. Prior conducting the performance evaluation, the research investigates the mobile laser behaviour and recognition capabilities with respect to polyethylene infrastructure materials. Each material has different characteristics and accordingly has a different response (reflections and absorptions) to laser pulses, where this response is constant and only material dependent. The mobile laser pulses response constant for the polyethylene infrastructure materials has been concluded after analysing the pulses behaviour and its correlations with the mission ground speed and exposed scanned surface. The obtained mobile laser scanning constant for the polyethylene infrastructure material is 726 pulses/cm when the system ground speed is 16.49 km/h. The concluded mobile laser pulses constant were used to develop a mathematical method for re-planning the mobile laser scanning missions to obtain the best model for updating the polyethylene infrastructure networks. Mobile laser scanning using the improved planning missions can detect 97% of the polyethylene infrastructure networks in a very good performance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SEBUAH MODEL DIOPTIMIS UNTUK PEMANTAUAN INFRASTRUKTUR POLITENA MENGGUNAKAN KAEDAH PEINGIMBASAN LASER MUDAH ALIH

Oleh

MAHMOUD FAWZI AL-HADER

September 2011

Pengerusi : Profesor Madya Ahmad Rodzi Mahmud, PhD
Fakulti : Institut Teknologi Maju

Pengemaskinian harian jaringan infrastruktur adalah amat sukar disebabkan pemasangan, penggantian dan pengkukuhan yang tertakluk kepada proses penyelenggaraan dan operasi yang kerap. Kecekapan aliran kerja penyelenggaraan dan operasi adalah berkait dengan lokasi geografik jaringan infrastruktur tersebut. Disebabkan pengemaskinian harian yang amat besar terhadap jaringan infrastruktur tersebut, pengumpulan maklumat lokasi pengemaskinian menggunakan kaedah pemantauan geospatial yang sedia ada adalah amat rumit. Penyelidikan ini mengemukakan suatu kaedah pengemaskinian data geospatial yang lebih cekap untuk jaringan sistem infrastruktur. Pemantauan ini adalah diperlukan untuk mencari lokasi geospatial dan mengemaskini pembangunan infrastruktur fizikal, lantas meningkatkan prestasi pengurusan dan penyelenggaraan asset-aset infrastruktur.
yang diperbaiki mampu mengesan 97% daripada jaringan infrastruktur polyethylene, prestasi yang agak memuaskan.
ACKNOWLEDGEMENTS

First and foremost, all praise to supreme almighty ALLAH S.W.T. The only creator, for giving me the strength, ability and patience to complete this research.

I would like to profusely thank my supervisor Assoc. Prof. Dr. Ahmad Rodzi Mahmud for reviewing my work, and who has helped me with his timely advice and suggestions and assistance throughout the research. I would like to express my gratitude to Assoc. Prof. Dr. Abdul Rashid Bin Mohamed Shariff and Dr. Noordin Ahmad for their timely advices and encouragement throughout my research work.

I would also thank Mr. Saeed Ahmad Saeed, Anas Turki and Mohamad Al-Hassoun for their guidance and support. Utmost thanks to my friend Saleh Dghameseh for his encouragement and support. Special thanks to my family my father, my mother, my brothers, my wife, my sons' Mothana, Jawad and Zain, for their patience and understanding. They are of always being there with me through the period of my PhD study.

I would also like to thank all who helped me during my research work.
I certify that an Examination Committee has met on to conduct the final examination of Mahmoud Fawzi Abdallah Alhader on his Doctor of Philosophy thesis entitled “Development of Optimized Model for Polyethylene Infrastructure Monitoring Using Mobile Laser Scanning Technique” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the examination committee were as follows:

Mohd Nizar Bin Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Helmi Zulhaidi Bin Mohd Shafri, PhD
Associate Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Internal Examiner)

Biswajeet Pradhan, PhD
Research Fellow
Institute of Advanced Technology
Universiti Putra Malaysia
(Internal Examiner)
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as partial fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Ahmad Rodzi Mahmud, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdul Rashid Mohamed Shariff, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Noordin Ahmad, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except that for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

__
MAHMOUD FAWZI AL-HADER

Date: 22 September 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Overview 1
1.2 Problem Statements 3
1.3 Objectives 4
1.4 Scope of Work 5
1.5 Thesis Organization 8

2 LITERATURE REVIEW

2.1 Introduction 9
2.2 Surveying techniques 10
2.3 Three dimensional scanner 15
2.4 Global Navigation Satellite System (GNSS) 16
2.5 GNSS Applications 17
2.6 Mobile Mapping Systems 19
 2.6.1 Mobile Mapping System Applications 21
2.7 Mobile Laser Scanning for Infrastructure Updating 23
2.8 Laser Scanning 30
2.9 Mobile Laser Scanning Technology for Surveying Application 32
 2.9.1 Mobile laser scanning accuracy 35
 2.9.2 Terrestrial laser scanning accuracy 36
 2.9.3 3D laser scanning performance 39
 2.9.4 Terrestrial laser scanning 41
2.10 Mobile Aerial photogrammetry accuracy 55
 2.10.1 Aerial photogrammetry coverage 58
 2.10.2 Aerial photogrammetry data extraction 60
2.11 Global positioning system accuracy 63
 2.11.1 GPS applications 65
 2.11.2 Inertial Measurement Unite IMU) applications 68
2.12 Smart cities 72
2.13 Overview of current smart city architecture 74
 2.13.1 The concept of smart city 74
2.13.2 The objective of smart city 77
2.14 Smart city components architecture 78
 2.14.1 The smart city development pyramid 85
2.15 Geospatial system interface development components 89
 2.15.1 SOA of smart city geospatial management 90
2.16 Information resource 93
 2.16.1 Geospatial data warehouse 94
 2.16.2 Intelligent infrastructure As-build data workflow 95
2.17 Intelligent modelling of geospatial data warehouse process flow 97
2.18 Building up an accurate geodatabase 99

3 METHODOLOGY
 3.1 Introduction 103
 3.2 Research methodology framework 106
 3.3 Smart infrastructure development and monitoring framework 109
 3.4 Technical comparison between the geospatial updating technologies 111
 3.5 Developed methodology of conducting mobile laser scanning missions 113
 3.6 Analytical analysis framework 116
 3.7 Data Modelling Enhancement Methodology 122

4 RESULTS AND DISCUSSION
 4.1 Introduction 124
 4.2 Geospatial city monitoring and surveying framework 125
 4.2.1 Evaluation of RTK GPS and mobile laser scanning GPS 126
 4.2.2 Evaluation of static laser scanning 130
 4.2.3 Aerial photographs 133
 4.2.4 Results of the accuracy and geospatial data collection efficiency comparison 134
 4.3 Mobile laser scanning missions 141
 4.3.1 Global Navigation Satellite System (GNSS) reference station 142
 4.3.2 Conducting the mobile laser scanning missions on the city Scale 145
 4.3.3 Mobile laser scanning post processing 147
 4.4 Address Uploading 150
 4.4.1 Analytical analysis of system speed and mobile laser pulses Intensity 150
 4.4.2 Model extraction for identifying the mobile laser missions ground speed best practice for monitoring the polyethylene pipelines 166
 4.4.3 Technical overview of equation terms calculations 168
 4.4.4 Geospatial technical overview of other geospatial objects 173
 4.4.5 Location and orientation adjustment using least square method 177
 4.5 Results colour coded 3D model 188
 4.6 Analysis of generated 3D surface model 194
 4.7 3D surface features extraction 196
 4.7.1 Infrastructure pipelines extraction 199

xii
4.7.2 Infrastructure overhead cables extraction 201
4.8 The GNSS effectiveness on the resulted 3D surface 202
4.8.1 Infrastructure features analysis 210
4.9 Observable and not observable infrastructure items using the developed mobile laser scanning technology 212
4.9.1 Intelligent modelling of the observed features utilizing mobile laser scanning 214
4.9.2 Time consumption of network connectivity analysis 219

5 CONCLUSION
5.1 Summary 224
5.1.1 Research Findings 226
5.1.2 Research Advantages 227
5.1.3 Research contribution 229
5.1.4 Suggestions for Future Works 230

REFERENCES 233
APPENDIX 249
BIODATA OF STUDENT 251
LIST OF PUBLICATIONS 252