

UNIVERSITI PUTRA MALAYSIA

ISOLATION OF GLUTAMIC ACID-PRODUCING LACTIC ACID BACTERIA AND ITS APPLICATION IN *THOSAI*

MOHSEN ZAREIAN

FSTM 2011 28

ISOLATION OF GLUTAMIC ACID-PRODUCING LACTIC ACID BACTERIA AND ITS APPLICATION IN *THOSAI*

By

MOHSEN ZAREIAN

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2011

i

ISOLATION OF GLUTAMIC ACID-PRODUCING LACTIC ACID BACTERIA AND ITS APPLICATION IN *THOSAI*

By

MOHSEN ZAREIAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for theDegree ofMaster of Science

November 2011

An abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ISOLATION OF GLUTAMIC ACID-PRODUCING LACTIC ACID BACTERIA

AND ITS APPLICATION IN THOSAI

BY

MOHSEN ZAREIAN

Chairperson:Professor Nazamid Saari, PhDFaculty:Food Science and Technology

In the present study, six different fermented foods were evaluated as potential source for the isolation and characterization of glutamic acid-producing lactic acid bacteria. A total of two hundred and seventy isolates were screened sequentially for catalase activity and Gram-staining, out of which, 218 were categorized as lactic acid bacteria (LAB). Microscopic and biochemical tests were used to further identify and authenticate these 218 presumptive LAB strains. The results of the HPLC analysis revealed that only 35strains,out of 218, have glutamic acid producing ability. The highest glutamic acid production potential was exhibited by the strain TMP 3b85, isolated from *tempeh* (fermented soybean). Further tests involving the use of 16S rRNA gene sequencing and sugar assimilation assay identified TMP 3b85 as *Lactobacillus plantarum*. Time-course analysis of the culture medium revealed the glutamic acid production ability of TMP 3b85 to be maximumafter 96 h. In addition, characteristics of *L.plantarum* such as growth rate, glucose consumption and pH profile affecting the yield of glutamic acid during fermentation were also evaluated. The fermentation process parameters such as pH. temperature, carbon source (glucose) and nitrogen source (ammonium nitrate) were optimized through factorial design and Response Surface Methodology to obtain the highest yield of glutamic acid in a basal medium. The highest glutamic acid level (3.353 mM) was obtained under the following optimized conditions: pH, 4.5; temperature, 37 °C; glucose, 12%; ammonium nitrate, 0.7%. In order to investigate glutamic acid production by L.plantarumin a food system, thosai was chosen as a substrate. L.plantarum (4.36 x 10^7 CFU/ml) was inoculated into the fermentor containing thosai ingredients including 29.7 g rice; 45 g wheatflour and 9.9 g skim milk powder in 84.6 ml distilled water. Fermentation was performed at ambient room temperature (29 °C); agitation rate 150 rpm for 216 h. Highest yield of glutamic acid was obtained (277 mg/kg) after 120 h. The findings of this study provide a potential basis for exploiting selected fermented food-related LAB as an alternative source for production of glutamic acid as a precursor of γ -amino butyric acid.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Untuk memenuhi

keperluan untuk ijazah Master Sains

ISOLATION OF GLUTAMIC ACID-PRODUCING LACTIC ACID BACTERIA AND ITS APPLICATION IN *THOSAI*

Oleh

MOHSEN ZAREIAN

November 2011

Pengerusi : Profesor Nazamid Saari, PhD

Fakulti : Sains dan Teknologi Makanan

Dalam kajian ini, bacteria asid laktat berkebolehan menghasilkan asid glutamat telah di asing dan di cirikan daripada enam sumber makanan fermentasi yang berbeza dan berpotensi.Dua ratus tujuh puluh isolat telah disaring secara berperingkat bagi aktiviti katalase dan kaedah pewarnaan gram, dimana daripada jumlah keseluruhan, 218 telah dikakgorican sebagai bakteria asid laktik. Ujian mikroskopik dan biokimia telah digunakan bagi mengenal pasti dan mengesahkan 218 strain LAB. Keputusan analisis oleh HPLC menunjukan bahawa, hanya 35 strain daripada 218, mempunyai kebolehan dalam menghasilkan asid glutamik.Bakteria pengeluar asid glutamik tertinsgi dan mempunyai potensi telah ditunjukan oleh strain TMP 3b85, diperolehi daripada *tempeh* (kacang soya yang ditapai). Ujian lanjutan yang melibatkan penggunaan jujukan gen 16s RNA dan ujian asimilasi gula telah mengenal pasti TMP 3b85 sebagai *Lactobacillus* plantarum. Analisis selangh waktu medium kultur menunjukkon bahawa kebolehan dalam menghasilkan asid glutamik oleh TMP 3b85 akan mencapai kepekatan maksimum selepas 96 jam. Selain itu, ciri-ciri Lactobacillus plantarum seperti kadar pertumbuhan, penggunaan glukosa dan profil pH yang memberi kesan terhadap hasil asid glutamik semasa proses penapian juga dinilai. Parameter proses penapaianseperti pH, suhu, sumberkarbon (ammonium nitrat) (glukosa) dan sumber nitrogen dioptimumkanmelaluireka bentuk faktorial dan Ransangan Metodologi Permukaan untuk mendapat kanhasil tertinggi asid glutamik dalam medium basal. Kadar tertinggi asid glutamik (3.353 mM) telah dibawah mengikut keadaan optimum seperti berikut: pH, 4.5, suhu 37 °C, glukosa 12%; dan ammoniumnitrat, 0.7%. Dalam usahauntuk menyiasat pengeluaranasid glutamikoleh L.plantarum dalam sistem makanan, tosaitelah dipilihsebagai substrat. L.plantarum (4.36 x 10⁷CFU/ml) telah inokula gikanke dalam bioreaktor yang mengandungibahan-bahantosaiseperti 29.7 gnasi;45 gtepung gandumdan 9.9 gserbuk susu tanpa lemakdalam 84.6 mlairsuling. Penapaian telah dilakukan pada suhu ambien (29°C); kadar pengacauan 150 rpm selama 216 jam. Hasil Tertinggiasi dglutamiktelah diperolehi (277 mg/kg) selepas 120 jam.Penemuan kajian ini memberikan potensi asas bagi mengeksploitasi makanan terpilih yang mengandungi LAB untuk dijadikan sumber alternatif bagi menghasilkan asid glutamat sebagai pelopor kepada pengeluaran GABA.

ACKNOWLEDGEMENT

I would like to thank all the people who made this project possible. Thanks to my supervisor, Professor Dr. Nazamid Saari for his continuous support, guidance, supervision, valuable advice and constructive comments. He has sacrificed much of his time and expertise contributing towards improvement of studies. Sincere thanks to the members of my committee speciallyDr. Abdul Karim Sabo Mohamed, for all his advice and contributions throughout this project. Special thanks to Dr. Afshin for the helpful discussion.

A special appreciation goes to Mr. Halim from the HPLC laboratory and also Mr. Zulkefli from the Microbiology Laboratory. Thanks also to Mr. Azman and all the laboratory assistants in the Biochemistry Laboratorydue to sharing all kinds of experience with me.Not forgetting Ms. Suraya and also Ms. Liza. All of them contributed selflessly and willingly throughout the duration of my project. I do appreciate all of their advice and assistance given to me.

Thanks to all my friends in the Food Biotechnology and Functional Food Research Laboratory, Farrah, Farnaz, Babak, Amir and Negar.

To my parents, sister and brother, thank you all for the encouragement.

vii

Approval

I certify that an Examination Committee met on **date of viva** to conduct the final examination of **Mohsen Zareian** on his Master of Science thesis entitled "Isolation of **Glutamic Acid-Producing Lactic Acid Bacteria and Its Application in** *Thosai*"inaccordance with Universiti Pertanian Malaysia (Higher degree) Act 1980 and Universiti Pertanian Malaysia (Higher degree) Regulation 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Examiner 1, PhD Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Examiner 2, PhD Professor Faculty of Graduate Studies Universiti Putra Malaysia (Internal Examiner)

Examiner 3, PhD Professor Faculty of Graduate Studies Universiti Putra Malaysia (External Examiner)

Bujang Kim Huat, PhD

Professor and Dean School of Graduate Studies, Universiti Putra Malaysia, This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee were as follows:

Nazamid Saari, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Azizah Abdul Hamid, PhD

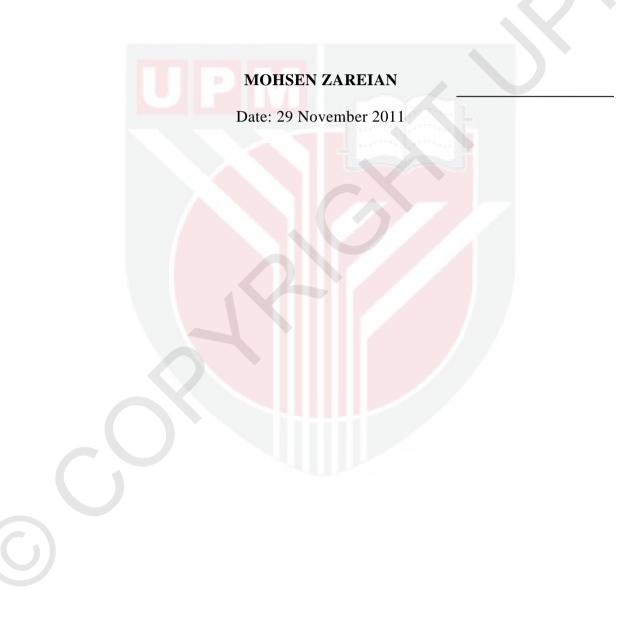
Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Fatimah Abu Bakar, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Abdul Karim Sabo Mohamed, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)


BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate studies Universiti Putra Malaysia

Date: 2 March 2012

DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institutions.

TABLE OF CONTENTS

				Page
ABSTRA ABSTRA ACKNOV APPROV DECLAR LIST OF LIST OF LIST OF	K WLEI ZAL RATIO TAB FIGU	DN LES JRES		iii v vii viii x xiii xiv xvi
СНАРТЕ	R			
1	INT	RODUC	CTION	1
2	т тт	FRATI	RE REVIEW	3
2	2.1	Amino		3
	2.1		hic Acid	3
	2.2	2.2.1		4
		2.2.1	Mechanism of Glutamic Acid Production in	5
			Microorganisms	C C
		2.2.3	Optimization of Glutamic Acid	9
		2.2.4	Response Surface Methodology	11
		2.2.5	Methods for Measuring Glutamic Acid	14
	2.3	Lactic	Acid Bacteria	16
		2.3.1	Importance of Lactobacilli in Foods	18
		2.3.2	The Genus Lactobacillus	19
		2.3.3	Screening and Identification of LAB	21
	2.4	Polyme	23	
	2.5	16S rib	29	
	2.6	Fermen	30	
		2.6.1	Food Fermentation	32
		2.6.2	Traditional Food Fermentation	34
		2.6.3	Biological Value of Fermented Foods	35
		2.6.4	Examples of Fermented Foods	35
3	MA	TERIAI	L AND METHODS	41
	3.1	Materia		41
		3.1.1	Fermented Food Samples	41
		3.1.2	Chemicals and Media	41
	3.2	Method	ls	41
		3.2.1	Extraction of Glutamic Acid from Food Samples	41
		3.2.2	Extraction of Glutamic Acid in MRS Broth	42
		3.2.3	Quantitative Analysis of Glutamic Acid	43
		3.2.4	Isolation of LAB	44
		3.2.5	Screening Glutamic Acid-Producing LAB	45
		3.2.6	Phenotypic Identification of LAB	45
		3.2.7	Genotypic Identification of LAB	48

		3.2.8 Time-Course Study of Glutamic Acid Production	50
		3.2.9 Study of the pH Profile	50
		3.2.10 Growth Profile Study	50
		3.2.11 Effect of Various Carbon Sources on the Glutamic Acid	51
		Production	
		3.2.12 Study of Reducing Sugar Profile	51
		3.2.13 RSM Design	52
		3.2.14 Preparation of <i>Thosai</i> as a Food System	56
		3.2.14 Treparation of <i>Thosai</i> as a Food System 3.2.15 Study of Glutamic Acid Production in <i>Thosai</i>	57
		3.2.16 Statistical analysis	57
		5.2.10 Statistical analysis	57
4	RESI	ULTS AND DISCUSSION	59
		Glutamic Acid Content in Food Samples	59
		Isolation of LAB from Food Samples	63
		Screening Glutamic Acid-Producing LAB	65
		Identification of the LAB Strain TMP 3b85	68
		4.4.1 Phenotypic Identification	68
		4.4.2 Genotypic Identification	72
		4.4.3 Study of Glutamic Acid-Production Profile	76
		4.4.4 Study of pH Profile	78
		4.4.5 Growth Characteristics of the LAB Strain TMP 3b85	80
		Optimization Study	82
		4.5.1 Effect of Various Carbon Sources on Glutamic Acid	82
			82
		Production	05
		4.5.2 Study of Glucose Consumption	85
		4.5.3 Response Surface Methodology	86
		Glutamic Acid Formation in a Food System	100
	4.7	Study of the pH Change during <i>Thosai</i> Fermentation	101
5	CON	CLUSION AND RECOMMENDATION FOR FUTUR STUDY	104
	REF	ERENCES	106
	APPI	ENDIX	132
	BIOI	DATA OF STUDENT	143