UNIVERSITI PUTRA MALAYSIA

CHANGES IN PHENOLIC COMPOUND PROFILES AND ANTIOXIDANT ACTIVITY OF PEANUT (*ARACHIS HYPOGAEA* L.) AS AFFECTED BY ROASTING AND STORAGE CONDITIONS

MAR MAR WIN

FSTM 2011 20
CHANGES IN PHENOLIC COMPOUND PROFILES AND ANTIOXIDANT ACTIVITY OF PEANUT (*ARACHIS HYPOGAEA L.*) AS AFFECTED BY ROASTING AND STORAGE CONDITIONS

BY

MAR MAR WIN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the requirements for the Degree of Master of Science

July 2011
DEDICATION

I dedicate this thesis to my parents and my country.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

CHANGES IN PHENOLIC COMPOUND PROFILES AND ANTIOXIDANT ACTIVITY OF PEANUT (*Arachis hypogaea* L.) AS AFFECTED BY ROASTING AND STORAGE CONDITIONS

By

MAR MAR WIN

July 2011

Chair person: Associate Professor Azizah Abdul Hamid, PhD

Faculty : Food Science and Technology

Peanut (*Arachis hypogaea* L.) has been recognised as a functional food because of the presence of numerous phytochemicals with antioxidant capacity. In this study, peanut skin, hull, raw peanut and roasted peanut flour were analysed for their contents of total phenols, antioxidant activity and individual phenolic composition. The effect of different roasting times (0, 10, 20, 30, 40, 50 min at 160 °C) of peanut flour (with and without skin) on phenolic compounds and their antioxidant activity were evaluated. Changes of phenolic composition and antioxidant activity were also monitored during storage of roasted peanut flour at 5, 25, and 37°C for 0, 15, 30, 45 and 60 days.
Results of the study showed that peanut skin had a significantly ($p < 0.05$) higher total phenolic compounds (TPC) and exhibited higher antioxidant activity than that of hulls, roasted peanut flour, and raw peanut as measured by DPPH, Linoleic acid peroxidation and TBA method, confirming the fact that phenolic compounds in peanuts are largely concentrated in the skins. Interestingly, as increasing roasting times, TPC and antioxidant capacity of peanut flour with and without skin, were significantly ($p < 0.05$) increased in a time dependent manner. Results of HPLC analysis revealed that the concentration of p-coumaric acid and quercetin in peanut flour with skin significantly ($P < 0.05$) increased after 30, 40, and 50 min of roasting. However, most of the phenolic compounds in peanut flour without skin, decreased gradually after 20 min of roasting time. Changes in TPC of roasted peanut flour without skin were independent of storage time and temperature, but antioxidant activity was found to be quite stable when stored at 5 °C. Individual phenolic compounds of roasted peanut flour without skin were significantly increased at the end of storage. After 45 days of storage, the levels of TPC of roasted peanut flour with skin significantly increased at all storage temperatures. However, antioxidant activity did not change significantly during storage. Surprisingly, individual phenolic compositions of roasted peanut flour with skin were found to be unstable and degraded at the end of storage (60 days). In conclusion, this study revealed that roasted peanut flour can be used as functional food ingredient with excellent sources of natural antioxidant compounds when appropriate processing and storage conditions are applied.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah master sains

PENGARUH PEMANGGANGAN DAN PENYIMPANAN TERHADAP PROFIL SEBATIAN FENOL DAN AKTIVITI ANTIOKSIDAN KACANG TANAH (Arachis hypogaea L.)

Oleh

MAR MAR WIN

Juali 2011

Pengerusi: Professor Madaya Azizah Abdul Hamid, PhD

Fakulti: Sains dan Teknologi Makanan

Kacang tanah (Arachis hypogaea L.) telah diakui sebagai makanan berfungsi kerana terdapat pelbagai sebatian fitokimia dengan kapasiti antioksidan. Dalam kajian ini, kulit dalaman, kulit luaran, kacang mentah dan tepung kacang tanah terpanggang dianalisis untuk total fenol, aktiviti antioksidan dan komposisi fenolik individu. Kesaran masa pemanggangan yang berbeza (0, 10, 20, 30, 40 dan 50 minit pada 160 °C) ke atas sebatian fenolik dan aktiviti antioksidan untuk tepung kacang tanah terpanggang (dengan dan tanpa kulit dalaman) dinilai. Perubahan komposisi fenolik dan aktiviti antioksidan semasa penyimpanan tepung kacang tanah terpanggang juga dipantau pada 5, 25, dan 37 °C pada hari 0, 15, 30, 45 dan 60.
Keputusan kajian menunjukkan bahawa kulit dalaman kacang tanah mengandungi jumlah fenolik (TPC) (p<0.05) dan aktiviti antioksidan lebih tinggi dari kulit luaran kacang, tepung kacang terpanggang, dan kacang mentah apabila dinilai dengan kaedah DPPH, asid linoleik dan TBA. Ini membuktikan bahawa sebatian fenolik yang tinggi terdapat dalam kulit dalaman kacang tanah. Menariknya, peningkatan masa pemanggangan meningkatkan secara signifikan (p<0.05) nilai TPC dan kapasiti antioksidan tepung kacang terpanggang dengan dan tanpa kulit. Keputusan analisis HPLC menunjukkan bahawa peningkatan nilai asid p-komarik dan kuersetin dalam tepung kacang terpanggang dengan kulit adalah signifikan (p<0.05) selepas 30, 40, dan 50 minit dipanggang. Namun, sebahagian besar sebatian fenolik dalam tepung kacang panggang tanpa kulit, menurun secara berperingkat selepas 20 minit masa pemanggangan. Perubahan TPC dalam tepung kacang terpanggang tanpa kulit adalah tidak dipengaruhi masa simpanan dan suhu, tetapi aktiviti antioksidan adalah stabil dalam simpanan pada 5°C. Sebatian fenolik tepung kacang terpanggang tanpa kulit secara signifikan meningkat pada akhir simpanan. Setelah 45 hari simpanan, tahap kandungan TPC tepung kacang terpanggang dengan kulit meningkat secara signifikan untuk semua suhu simpanan. Namun, aktiviti antioksidan tidak berubah secara signifikan selama penyimpanan. Menariknya, komposisi fenolik dari tepung kacang terpanggang dengan kulit didapati tidak stabil dan mengalami pengurangan pada akhir simpanan (60 hari). Sebagai kesimpulan, kajian ini menunjukkan bahawa tepung kacang terpanggang boleh diaplikasikan sebagai bahan makanan berfungsi dengan sumber sebatian antioksidan semulajadi yang terbaik apabila keadaan pemprosesan dan penyimpanan yang sesuai digunakan.
ACKNOWLEDGEMENTS

I would like to express my very deepest gratitude to Associate Professor Dr. Azizah Abdul Hamid, the Chairman of my supervisory committee for her kind assistant, advice, supports and comments during my study. My appreciation and sincere thank to Associate Professor Badlishah Sham Baharin, co-supervisor of my supervisory committee for his generous efforts, advice and suggestion in the preparation of these thesis.

My sincere thanks also go to all lectures and staffs of Faculty of Food Science and Technology who have provided technical support. I am very thankful to all of my friends in Food Biotechnology and Functional Food Lab 3. It was such a great pleasure to work with all of you and thanks a lot for your supports and being always helpful during my study.

My gratitude is also due to the authorities of Ministry of Agriculture and Irrigation, Union of Myanmar for the official permission to study for a Master degree at Universiti Putra Malaysia. Again, I would like to express my special thanks and gratitude to Oil Crops Development Project (FAO) in Myanmar for providing financial supports for this study. My Special thanks and heartfelt appreciation goes to Sayama Dr. Myint Thuzar that she had done great work for all the process of Thesis Submission after my Viva. Finally, I would like to express my deepest gratitude to my beloved parents, my sister, my brothers and U Tun Naing for their continuous support, love and sacrifices during the period of my study in Malaysia.
I certify that a Thesis Examination Committee has met on 2 August 2011 to conduct the final examination of Mar Mar Win on her thesis entitled “Changes in phenolic compound profiles and antioxidant activity of peanut (Arachis hypogaea L.) parts as affected by roasting and storage conditions” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdulkarim Sabo Mohammed, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Suhaila Mohamed, PhD
Professor
Institute Bioscience
Universiti Putra Malaysia
(Internal Examiner)
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azizah Abdul Hamid (PhD)
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Badlishah Shan Baharian
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MAR MAR WIN
Date: 22 July 2011
TABLE OF CONTENTS

ABSTRACT iii
ABSTRAK v
ACKNOWLEDGMENT vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF APPENDICES xvi
LIST OF ABBREVIATIONS xvii

CHAPTER

I INTRODUCTION 1

II LITERATURE REVIEW

2.1 World Peanut Production 5
2.2 Peanut Consumption 6
2.3 Peanut Flour 6
2.4 Composition and Nutritional Values of Peanuts 7
2.5 Health Benefits of Peanuts 10
2.6 Roasting 11
 2.6.1 Roasting Effect on Antioxidant and Phenolic Compounds 12
2.7 Storage 14
 2.7.1 Storage Effect on Antioxidant and Phenolic Compounds 15
2.8 Phenolic Compounds 17
 2.8.1 Phenolic Acids 18
 2.8.2 Flavonoids 22
2.9 Oxidation and Importance of Phenolic Compounds 27
2.10 Measurement of Antioxidant Activity 30
 2.10.1 DPPH (2, 2-Diphenyl-1-picrylhydrazyl) assay 30
 2.10.2 Linoleic acid peroxidation Method 30
 2.10.3 Thiobarbituric Acid (TBA) Test 31
 2.10.4 Total Phenolic Measurement 32
2.11 Relationship between Antioxidant Activity and Phenolic Compounds 33
III EVALUATION OF PHENOLIC COMPOSITIONS AND ANTIOXIDANT ACTIVITY OF PEANUT’S SKIN, HULL, RAW AND ROASTED PEANUT FLOUR

3.1 Introduction 36
3.2 Materials and Methods
 3.2.1 Materials and Reagents 38
 3.2.2 Sample Preparation 38
 3.2.3 Extraction of Antioxidant Components 39
 3.2.4 Determination of Total Phenolic Compounds 39
 3.2.5 Determination of Antioxidant Activity 40
 3.2.6 Determination of Individual Phenolic Compounds 42 using HPLC
 3.2.7 Statistical Analysis 44
3.3 Results and Discussion
 3.3.1 Total Phenolic Compounds 44
 3.3.2 Antioxidant Activity 46
 3.3.5 Correlation between TPC and Antioxidant Activity 49
 3.3.6 Individual Phenolic Compounds 50
3.4 Conclusion 56

IV EFFECT OF ROASTING TIMES ON PHENOLIC COMPOSITION AND ANTIOXIDANT ACTIVITY OF PEANUT FLOUR

4.1 Introduction 56
4.2 Materials and Methods
 4.2.1 Materials and Reagents 58
 4.2.2 Sample Preparation and Roasting 58
 4.2.3 Extraction of Antioxidant Components 59
 4.2.4 Determination of Total Phenolic Compounds 59
 4.2.5 Determination of Antioxidant activity 59
 4.2.6 Determination of Phenolic acids and Flavonols 60
 4.2.7 Statistical Analysis 60
4.3 Results and Discussion
 4.3.1 Effect of Roasting Times on Total Phenolic Compounds 61
 4.3.2 Effect of Roasting Times on DPPH Radical Scavenging activity 65
 4.3.3 Effect of Roasting Times on Percent Inhibition of Linoleic Acid Peroxidation 67
 4.3.4 Effect of Roasting Times on Antioxidant Activity in TBA Method 70
 4.3.5 Correlation analysis between Total Phenolics and Antioxidant activity of Roasted Peanut Flour 72
 4.3.6 Effect of Roasting Times on Phenolic Acids and Flavonol Contents 73
V CHANGES IN PHENOLIC COPOSITION AND ANTIOXIDANT ACTIVITY OF ROASTED PEANUT FLOUR AS AFFECTED BY STORAGE CONDITIONS (TEMPERATURE AND TIME)

5.1 Introduction 78
5.2 Materials and Methods
 5.2.1 Materials and Reagents 79
 5.2.2 Sample Preparation and Storage Condition 79
 5.2.3 Extraction of Antioxidant Components 80
 5.2.4 Determination of Total Phenolics Compounds 80
 5.2.5 Determination of Antioxidant Activity 80
 5.2.6 Determination of Phenolic acids and Flavonols 81
 5.2.7 Statistical Analysis 81
5.3 Results and Discussion
 5.3.1 Effect of Storage Temperature and Time on Total Phenolic Compounds 82
 5.3.2 Effect of Storage Temperature and Time on DPPH Radical Scavenging Activity 84
 5.3.3 Effect of Storage Temperature and Time on Percent Inhibition of Linoleic Acid Peroxidation 86
 5.3.4 Effect of Storage Temperature and Time on Antioxidant Activity in TBA method 88
 5.3.5 Effect of Storage Temperature and Time on Phenolic Acids and Flavonols Contents 88
5.4 Conclusion 95

VI. GENERAL CONCLUSION AND RECOMMENDATION 97
REFERENCES 100
APPENDICES 119
BIODATA OF STUDENT 127
LIST OF PUBLICATIONS 128