UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF ELECTRODEPOSITED CADMIUM TELLURIDE THIN FILM

MOHD NORIZAM BIN MD DAUD

FS 2011 104
PREPARATION AND CHARACTERIZATION OF ELECTRODEPOSITED CADMIUM TELLURIDE THIN FILM

By

MOHD NORIZAM BIN MD DAUD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2011
DEDICATION

TO MY LOVELY FAMILY

Md Daud bin Md Amin
Hasnah@Hasanah binti Wahi
Mohd Hasnizam bin Md Daud
Mohd Salizam bin Md Daud

Thank you for the inspiration and encouragement in everything I do
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIZATION OF ELECTRODEPOSITED
CADMIUM TELLURIDE THIN FILM

By

MOHD NORIZAM BIN MD DAUD

December 2011

Chairman: Professor Azmi Zakaria, PhD
Faculty: Science

The electrophoretic deposition (EPD) is the most potential techniques in fabricating
low cost photovoltaic cells. In preparing CdTe film by EPD technique two factors
play a role in determining the suitability and film thickness, i.e. bath temperature and
CdTe colloid concentration. Previously, both of these factors were fixed, or with only
one factor varied. Here the attempt is made to vary both of these factors in this EPD
technique. For this aim, different type of CdTe films were developed from various
CdTe colloid concentrations. These concentrations were obtained by mixing 1 to
4 wt% of CdTe powder to the 10 ml solution of equal mixture of methanol and
toluene, and deposited at various bath temperatures from 30 to 60 °C.

The CdTe thin films obtained are polycrystalline nature of zinc-blend structure with
the (111) orientation as the most prominent peak revealed from the XRD analysis. As
the CdTe colloid concentration and bath temperature increase the crystallite size of
the film, in nano-size, increases and this affects the decrease in micro-strain and dislocation density hence decreases the lattice defect. The transmittance spectra of CdTe thin films shows slightly shift towards longer wavelength which agrees with the decrease of band gap energy with increasing of CdTe concentration and bath temperature for all films. The decrease of band gap energy is due to the increase in nano-crystallite size and the decrease in strain and dislocation density. Here band gap energy of nano-size is greater than that of bulk CdTe (1.44 eV). The CdTe thin film prepared at bath temperature of 30 °C and concentration of 3 wt% using EPD technique was found most suitable for the solar cell application because of the uniform surface, suitable band gap energy, 1.485 eV, and suitable thickness around 8 μm.

The surface morphology and thickness of the films were determined by AFM analysis. The film thickness increases with CdTe colloid concentration and increases with bath temperature. The increase of the thickness causes the increase of film surface roughness due to the larger crystallite size with increase of concentrations and bath temperatures. The established numerical expression for film thickness with respect to CdTe solution concentrations and bath temperatures agrees well with other literature work.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN ELEKTROENAPAN FILEM NIPIS KADMIUM TELURIDA

Oleh

MOHD NORIZAM BIN MD DAUD

Disember 2011

Pengerusi: Profesor Azmi Zakaria, PhD

Fakulti: Sains

Pengenapan elektroforetik (EPD) adalah teknik yang paling berpotensi dalam menghasilkan sel fotovolta kos rendah. Dalam penyediaan filem CdTe menggunakan teknik EPD dua faktor memainkan peranan dalam memenuhi kesesuaian dan ketebalan filem, iaitu suhu mandian dan kepekatan CdTe koloid. Sebelum ini, kedua-dua faktor ditetapkan, atau hanya satu faktor di bezakan. Di sini penyediaan di buat untuk mempelbagaikan kedua-dua faktor melalui teknik EPD. Bagi tujuan ini, berlainan jenis filem CdTe telah kembangkan daripada kepelbagaian kepekatan CdTe koloid. Kepekatan ini diperolehi dengan mencampurkan 1 hingga 4 wt% serbuk CdTe dengan 10 ml larutan methanol dan toluene yang sama isipadu, dan didepositkan pada pelbagai suhu mandian daripada 30 hingga 60°C.

Analisis XRD menunjukkan filem-filem nipis CdTe yang diperolehi adalah bersifat polihabluran struktur zink-blend dengan orientasi (111) sebagai puncak yang paling
menonjol. Apabila kepekatan koloid CdTe dan suhu mandian meningkat, saiz hablur filem, dalam saiz-nano, bertambah dan ini memberi kesan peningkatan terekan-mikro dan ketumpatan kehelan seterusnya menurunkan kecacatan kekisi. Spektra kehantaran filem nipis CdTe menunjukkan sedikit peralihan ke arah panjang gelombang yang lebih panjang yang mana bersesuaian dengan penurunan jurang jalur tenaga dengan peningkatan kepekatan CdTe dan suhu mandian untuk semua filem. Penurunan jurang jalur tenaga adalah disebabkan oleh peningkatan saiz hablur-nano dan pengurangan dalam terikan dan ketumpatan kehelan. Jurang jalur tenaga bagi saiz nano adalah lebih besar dari CdTe pukal (1.44 eV). Filem nipis CdTe yang disediakan pada suhu mandian 30 °C dan kepekatan 3 wt% menggunakan teknik EPD didapati paling sesuai untuk aplikasi sel solar kerana permukaan filem yang seragam, jurang jalur tenaga yang bersesuaian, 1.485 eV, dan ketebalan filem yang sesuai iaitu sekitar 8 µm.

Morfologi permukaan dan ketebalan filem telah ditentukan daripada analisis AFM. Ketebalan filem bertambah dengan kepekatan koloid CdTe dan bertambah dengan suhu mandian. Peningkatan dalam ketebalan menyebabkan peningkatan kekasaran permukaan filem disebabkan saiz hablur yang lebih besar dengan peningkatan kepekatan dan suhu mandian. Hubungan berangka untuk ketebalan filem yang berhubung dengan kepekatan larutan CdTe dan suhu bekas telah di setujui oleh hasil kerja terdahulu.
ACKNOWLEDGEMENTS

I would like to give greatest appreciation and special thanks to my supervisor, Prof. Dr. Azmi Zakaria for his superb immeasurable support, invaluable guidance, generous advice, encouragement, moral support and cooperation while examining my thesis. I also like to extend my sincere appreciation to Prof. Dr. Zulkarnain Zainal, Prof. Dr. Abd. Halim Shaari and Assoc. Prof. Dr. Zahid Ridzwan for his guidance and helpful discussion especially during the period of sample preparation.

In additional, I express my thanks to my family for their support until I finish my thesis, all my best friends especially Mohd Sabri Mohd Ghazali, Syaharudin Zaibon, and Mohd Mustaza Rosli who have directly or indirectly contributed toward the success of this research, all staffs in Physics Department for their co-operation, and lastly to Yayasan Pahang for the financial support, which enable me to complete my study.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azmi Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zulkarnain Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHD NORIZAM BIN MD DAUD

Date: 30 December 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 World Consumption of Energy and Natural Resources 1
1.2 Solar/Photovoltaic Cells 2
1.3 Cadmium Telluride (CdTe) 5
1.4 Electrophoretic Deposition Technique (EPD) 11
1.5 Significant of the Study 15
1.6 Problem Statement 15
1.7 Scope of the Study 15
1.8 Objectives of the Study 16
1.9 Outline of the Thesis 16

2 LITERATURE REVIEW
2.1 Introduction 17
2.2 Cadmium Telluride (CdTe) Thin Film 17
2.3 Electrophoretic Deposition (EPD) Technique 20

3 THEORY
3.1 Electrodeposition 23
3.2 Electrophoretic Deposition 24
3.3 Factors Influencing EPD 25
3.4 Parameters Related to the Suspension
 3.4.1 Particle Size 26
 3.4.2 Conductivity of Suspension 27
 3.4.3 Viscosity of Suspension 27
3.5 Parameters Related to the Process
 3.5.1 Effect of Deposition Time 27
 3.5.2 Applied Voltage 28
 3.5.3 Concentration of Solid in Suspension 29

4 METHODOLOGY
 4.1 Introduction 30
 4.2 Films Preparation 30
 4.3 Electrophoretic Set-Up 32
 4.4 Electrode Preparation
 4.4.1 Working Electrode (Cathode) 33
 4.4.2 Counter Electrode (Anode) 34
 4.5 Solution for EPD 34
 4.6 Parameters for EPD
 4.6.1 Varying Bath Temperature 34
 4.6.2 Varying the Concentration of CdTe Powder 35
 4.7 Precaution Steps 35
 4.8 Films Characterization
 4.8.1 X-Ray Diffraction (XRD) 36
 4.8.2 Atomic Force Microscopy (AFM) 37
 4.8.3 UV-Vis Spectrometer (UV) 39

5 RESULTS AND DISCUSSION
 5.1 Introduction 42
 5.2 Phase and Structural Analysis
 5.2.1 Effect of Bath Temperature 43
 5.2.2 Crystallite Size (D), Strain (ε) and Dislocation Density (δ) 50
 5.2.3 Further Discussion 54
 5.3 Surface Morphology Analysis
 5.3.1 Atomic Force Microscopy Analysis 55
 5.3.2 Film Thickness 62
 5.4 Optical Studies
 5.4.1 Transmittance Spectra 65
 5.4.2 Absorption Edge and Energy Bandgap 67
 5.4.3 Further Discussion 76

6 CONCLUSION AND FUTURE WORKS
 6.1 Conclusions 78
 6.2 Suggestion for Future Works 80

REFERENCES 82
APPENDICES 90
BIODATA OF STUDENT 92
LIST OF PUBLICATIONS/CONFERENCES 93