UNIVERSITI PUTRA MALAYSIA

BENEFICIAL PROPERTIES OF *Garcinia atroviridis* Griff.
FRUIT AND LEAF AQUEOUS EXTRACT IN EXPERIMENTAL
ATHEROSCLEROSIS IN RABBITS

NURSAKINAH BINTI ISEMAAIL

FPSK(m) 2012 14
BENEFICIAL PROPERTIES OF *Garcinia atroviridis* Griff. FRUIT AND LEAF AQUEOUS EXTRACT IN EXPERIMENTAL ATHEROSCLEROSIS IN RABBITS

By

NURSAKINAH BINTI ISEMAAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2012
DEDICATION

I would love to dedicate this accomplishment to my lovely parents, Isemaail bin Basri and Fatimah binti Ibrahim; to my precious siblings, Nizamuddin, Nurfadhilah, Najmi and Nurnaimah; to my much beloved husband, Muhammad Nor Fazali bin Fazil; and last but certainly not least to my dear lifelong best friend, Hasnah binti Bahari.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

BENEFICIAL PROPERTIES OF *Garcinia atroviridis* Griff. FRUIT AND LEAF AQUEOUS EXTRACT IN EXPERIMENTAL ATHEROSCLEROSIS IN RABBITS

By

NURSAKINAH BINTI ISEMAAIL

June 2012

Chairman: Assoc. Prof. Zulkhairi Amom, PhD

Faculty: Medicine and Health Sciences

Numerous plants were proven beneficial in preventing atherosclerosis. The plant *Garcinia atroviridis*, locally known as asam gelugur had been traditionally utilized for various medicinal purpose. The present study aimed to evaluate the potential benefit of *G. atroviridis* fruit and leaf aqueous extracts supplementation by assessing the lipid profiles, antioxidant and liver enzymes, and atherosclerosis development in atherosclerosis-induced rabbits. The fruit and leaf samples were collected fresh from parts of Kedah, Malaysia; cut into pieces, dried in an oven at 30°C for 2 days and powdered. Then, 100 g of fruits and leaves powder were soaked separately in 1000 ml distilled water, incubated in water bath at three temperatures and time settings (40°C for 12 hours; 60°C for 6 hours; 100°C for 15 min) to optimize their antioxidant ability, filtered and spray dried. The antioxidant activity was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and Ferric Reducing Antioxidant Power assay. Total phenolic content was measured by the Folin Ciocalteu method. The leaf extract (89.2%)
had higher DPPH scavenging activity than vitamin C (88.8%) (p≥0.05) and almost comparable to synthetic antioxidant butylated hydroxytoluene (94.6%). The fruit and leaf extracts prepared at 60°C for 6 hours, and 100°C for 15 min, respectively offered the highest antioxidant activity and phenolic contents, and therefore were supplemented to the rabbits. The extracts were force-fed once daily for 12 weeks at the dose of 50 mg/kg (F50), 100 mg/kg (F100) and 200 mg/kg (F200) for fruits; and 5 mg/kg (L5), 55 mg/kg (L55) and 105 mg/kg (L105) for leaves. Three control groups were excluded from the extract supplementation. All rabbits were fed a 0.5% cholesterol enriched diet, except the normal control group. The simvastatin control group was prescribed 10 mg/kg simvastatin while the positive control group was without any supplementation. Blood samples were collected via marginal ear vein at the beginning and every 4 weeks. As the experiment end, the leaf (L105) and fruit (F50, F100 and F200) supplementations significantly (p<0.05) retained the enzyme superoxide dismutase at its initial level. All extracts supplementations significantly reduced (p<0.05) lipid profiles (total cholesterol, triglycerides and low density lipoprotein) and liver enzymes (alkaline phosphatase, gamma-glutamyl transpeptidase and aspartate aminotransferase). Both extracts had effectively prevented liver damage and atherosclerotic plaque formation with at least 25% lower atherogenic index than the positive control group. Hence, this study signifies the potential benefits of *G. atroviridis* fruit and leaf extracts as antioxidants, hypocholesterolemic, hepatoprotective, and anti-atherosclerotic agents.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

FAEDAH KANDUNGAN EKSTRAK AIR BUAH DAN DAUN *Garcinia atroviridis* Griff DALAM EKSPERIMEN ATEROSKLEROSIS DALAM ARNAB

Oleh

NURSAKINAH BINTI ISEMAAIL

Jun 2012

Pengerusi: Prof. Madya Zulkhairi Amom, PhD

Fakulti: Fakulti Perubatan dan Sains Kesihatan

Pelbagai tumbuhan telah terbukti berkesan mengurangkan risiko penyakit aterosklerosis. Tumbuhan *Garcinia atroviridis*, dikenali sebagai asam gelugur telah digunakan secara tradisi untuk pelbagai tujuan kesihatan. Kajian ini bertujuan menilai potensi faedah pengambilan ekstrak buah dan daun *G. atroviridis* sebagai makanan tambahan, dengan mengkaji profil lemak, enzim antioksida dan hati, serta pertumbuhan aterosklerosis dalam arnab yang dirangsang ke arah atherosklerosis. Sampel buah dan daun segar dikumpul dari beberapa kawasan di Kedah, Malaysia; dipotong, dikeringkan di dalam ketuhar pada suhu 30°C selama 2 hari dan dihancurkan. Kemudian, 100 g serbuk buah dan daun direndam secara berasingan dalam 1000 ml air suling, dieram dalam pengukus pada tiga tetapan suhu dan masa (40°C selama 12jam; 60°C selama 6jam; 100°C selama 15 minit) bagi mengoptimumkan antioksidannya, ditapis dan dikeringkan secara semburan. Aktiviti antioksidan diukur menggunakan ujian perambatan 1,1-diphenyl-2-picrylhydrazyl (DPPH) dan asai kemampuan menurunkan ferum (FRAP). Jumlah kandungan fenolik diukur
Aktiviti antioksida ekstrak daun (89.2%) adalah lebih tinggi daripada vitamin C (88.8%) \((p \geq 0.05)\) dan hampir sama dengan antioksida tiruan \textit{butylated hydroxytoluene} (94.6%). Ekstrak buah yang disediakan pada suhu 60\(^0\)C dalam tempoh pengeraman 6 jam, serta ekstrak daun yang disediakan pada 100\(^0\)C dalam 15 minit mempunyai aktiviti antioksida dan kandungan fenolik paling tinggi, maka ia diberikan sebagai makanan tambahan kepada arnab. Ekstrak tersebut disuapkan secara paksa sekali sehari selama 12 minggu pada dos 50 mg/kg (F50), 100 mg/kg (F100) dan 200 mg/kg (F200) bagi buah; 5 mg/kg (L5), 55 mg/kg (L55) dan 105 mg/kg (L105) bagi daun. Tiga kumpulan kawalan telah dikecualikan dari pemberian ekstrak. Semua arnab diberi makanan yang diperkaya 0.5% kolesterol, kecuali kumpulan kawalan normal. Kumpulan kawalan simvastatin (SC) telah diberi 10 mg/kg simvastatin manakala kumpulan kawalan positif tidak diberi apa-apa rawatan. Sampel darah dikumpul melalui salur vena telinga pada permulaan dan setiap 4 minggu. Setelah eksperimen berakhir, didapati pemberian daun (L105) dan buah (F50, F100 and F200) telah mengekalkan enzim \textit{superoxide dismutase} secara signifikan (\(p < 0.05\)) di tahap asal. Semua pemberian ekstrak telah menurunkan profil lemak (jumlah kolesterol, trigliserida dan lipoprotein ketumpatan rendah) serta enzim hati \textit{(alkaline phosphatase, gamma-glutamyl transpeptidase dan aspartate aminotransferase)} secara signifikan (\(p < 0.05\)). Kedua-dua ekstrak itu juga telah berkesan menghalang kerosakan hati dan pembentukan plak aterosklerosis, dengan index aterosklerosis sekurang-kurangnya 25% lebih rendah dari kumpulan kawalan positif. Maka, kajian ini telah menunjukkan potensi faedah buah dan daun \textit{G.atroviridis} sebagai antioksida, agen pengawal kolesterol, pelindung organ hati dan anti-aterosklerosis.
ACKNOWLEDGEMENTS

In the name of ALLAH, the most gracious and the most merciful, as through HIS blessings I have been able to complete this thesis as required. This thesis is the end of my long journey in obtaining the degree of Masters of Science in Physiology. My deepest and sincere gratitude to my main supervisor, Assoc. Prof. Dr. Zulkhairi bin Haji Amom, from the Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia for opening the door of further education for me and giving me the opportunity to pursue this study. His wide knowledge and guidance have been of great value for me. I would also like to express my gratitude to my co-supervisor, Dr. Norhafizah binti Mohtaruddin for her detailed and constructive comments, understanding and personal guidance, which provided a good basis for the present thesis. I would also like to thank the lecturers and staffs of the Faculty of Medicine and Health Sciences, UPM and the Forest Research Institute of Malaysia (FRIM), Kuala Lumpur who were involved in giving me assistance either directly or indirectly in the completion of this thesis and the experiments. Also many thanks to all the members of my research group for extensive help and lovely memories of company throughout the duration of my study. My appreciation also goes to the Ministry of Higher Education for funding my research through the Fundamental Research Grant Scheme (FRGS). Finally, my warmest and special gratitude goes to my parents and all my family members, my husband and my best friend for their continuous support and love. I am highly in debt to them and wish nothing but the best for them in the future journey of their lives.
APPROVAL

I certify that an Examination Committee has met on 18th of June 2012 to conduct the final examination of Nursakinah binti Isemaail on her Master of Science thesis entitled "Beneficial Properties of Garcinia atroviridis Griff Fruit and Leaf Aqueous Extract in Experimental Atherosclerosis in Rabbits" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Sabrina binti Sukardi, PhD
Assoc. Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohamed Ali bin Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Azrina binti Azlan, PhD
Assoc. Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Jamaludin Mohamed, PhD
Professor Dato’
Faculty of Medicine
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zulkhairi Hj Amom, PhD
Associate professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhafizah Mohtaruddin, PhD
Senior Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURSAKINAH BINTI ISEMAAIL

Date: 18 June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 - Introduction
 - Garcinia Atroviridis
 - Atherosclerosis
 - Lipids, cholesterol and lipoproteins
 - Cholesterol Uptake
 - Lipids Exogenous Pathway
 - Lipids Endogenous Pathway
 - Low Density Lipoprotein
 - High Density Lipoprotein
 - Hypercholesterolemia
 - Free radicals and oxidation
 - Low Density Lipoprotein Oxidation
 - Lipid Peroxidation
 - Antioxidants
 - Endogenous Antioxidant
 - Exogenous Antioxidant
 - Phenolic Compounds
 - Flavonoids
 - Experimental Research on Atherosclerosis
 - Conclusion
3 GENERAL MATERIALS AND METHODS
 Equipments 41
 Plant Materials and Extraction 41
 Experimental Animal Procedures 43

4 NUTRITIONAL COMPOSITION AND IN VITRO ANTIOXIDANT ACTIVITY OF Garcinia atroviridis FRUITS AND LEAVES
 Introduction 45
 Materials and Methods 47
 Chemicals and Reagents 47
 Proximate and Mineral Contents 47
 Plant Materials and Extraction 47
 DPPH radical scavenging 48
 Ferric Reducing Antioxidant Power 49
 Total phenolic content 49
 Statistical Analysis 50
 Results
 Proximate and Mineral Contents 51
 DPPH radical scavenging 53
 Ferric Reducing Antioxidant Power 55
 Total phenolic content 57
 Discussion and Conclusion 59

5 IN VIVO ANTIOXIDANT STATUS OF RABBITS FED A CHOLESTEROL-ENRICHED DIET SUPPLEMENTED WITH Garcinia atroviridis FRUIT AND LEAF AQUEOUS EXTRACT
 Introduction 64
 Materials and Methods 67
 Commercial Kits and Equipments 67
 Plant Materials and Extraction 67
 Experimental Animal Procedures 67
 Superoxide Dismutase (SOD) 68
 Glutathione Peroxidase (GPx) 68
 Total Antioxidant Activity (TAS) 68
 Statistical Analysis 69
 Results
 Superoxide Dismutase (SOD) 70
 Glutathione Peroxidase (GPx) 73
 Total Antioxidant Activity (TAS) 76
 Discussion and conclusion 79
6 LIPID PROFILES OF RABBITS FED A CHOLESTEROL-ENRICHED DIET SUPPLEMENTED WITH *Garcinia atroviridis* FRUIT AND LEAF AQUEOUS EXTRACT

Introduction 84
Materials and Methods 86
 Commercial Kits and Equipments 86
 Plant Materials and Extraction 86
 Experimental Animal Procedures 86
 Total Cholesterol 87
 Low Density Lipoprotein 88
 High Density Lipoprotein 89
 Tryglycerides 90
 Atherogenic Index (AI) 91
 Statistical Analysis 91
Results
 Total Cholesterol 92
 Low Density Lipoprotein 95
 High Density Lipoprotein 98
 Tryglycerides 101
 Atherogenic Index (AI) 104
Discussion and conclusion 107

7 LIVER FUNCTION STATUS OF RABBITS FED A CHOLESTEROL-ENRICHED DIET SUPPLEMENTED WITH *Garcinia atroviridis* FRUIT AND LEAF AQUEOUS EXTRACTS

Introduction 111
Materials and Methods
 Commercial Kits and Equipments 113
 Plant Materials and Extraction 113
 Experimental Animal Procedures 113
 Alkaline phosphatase (ALP) 114
 Alanine aminotransferase (ALT) 114
 Aspartate aminotransferase (AST) 115
 Gamma-glutamyl transpeptidase (GGT) 115
 Statistical Analysis 116
Results
 Alkaline phosphatase (ALP) 117
 Alanine aminotransferase (ALT) 120
 Aspartate aminotransferase (AST) 123
 Gamma-glutamyl transpeptidase (GGT) 126
Discussion and conclusion 129
EFFECTS OF SUPPLEMENTING *Garcinia atroviridis* FRUIT AND LEAF AQUEOUS EXTRACTS ON ATHEROSCLEROSIS PROGRESSION AND LIVER HISTOLOGY

Introduction

133

Materials and Methods

- Commercial Kits and Equipments
- Plant Materials and Extraction
- Experimental Animal Procedures
- Atherosclerotic Plaques
- Histology of Aorta and Liver

Results

- Atherosclerotic Plaques
- Histology of Aorta
- Histology of Liver
- Discussion and Conclusion

GENERAL DISCUSSION

General discussion

148

CONCLUSION

Conclusion

152

Recommendations for Future Research

154

REFERENCES

156

APPENDICES

177

BIODATA OF STUDENT

180