PROTECTIVE EFFECTS OF PALM VITAMIN E ON GLUTAMATE-INDUCED INJURY OF ASTROCYTES

IBRAHIM BIN MUSA

FPSK(M) 2012 12
PROTECTIVE EFFECTS OF PALM VITAMIN E ON GLUTAMATE-INDUCED INJURY OF ASTROCYTES

By

IBRAHIM BIN MUSA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PROTECTIVE EFFECTS OF PALM VITAMIN E ON GLUTAMATE-INDUCED INJURY OF ASTROCYTES

By

IBRAHIM BIN MUSA

February 2012

Chair : Huzwah Khaza’ai, PhD

Faculty : Faculty of Medicine and Health Sciences

Glutamate toxicity is a major contributor to neurodegeneration in the nervous system. In the past few years, palm tocotrienol-rich fraction (TRF) has been shown to provide neuroprotection to neurons against glutamate excitotoxicity. Palm TRF is an extract of palm oil and consists of 25% α-tocopherol and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection and cholesterol-lowering activities. The main objective of the present study is to observe the effects of vitamin E when given to astrocytes before (pre-treatment) and after (post-treatment) glutamate excitotoxicity. A few parameters were selected; cell viability, mRNA expression of neuron specific enolase (NSE), concentration of glutathione (GSH) in the astrocytes and morphology of the cell. Cell viability was measured by using the MTT assay. NSE which is a type of neurobiological marker was observed by using the Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Finally, cell morphology was monitored under fluorescence microscope by using the acridine
orange/propidium iodide (AO/PI) assay. The concentration of glutamate (180mM) used throughout this study was only meant to cause injury to the astrocytes. Three types of vitamin E were used for the cell viability assay; tocotrienol rich fraction (TRF), tocotrienol enriched fraction (TEF) and α-tocopherol. Exposure to 180 mM glutamate resulted in 20% of cells death. There was no significant difference between the viability of the cells that were pre- and post-treated with various concentrations of TRF, TEF and α-tocopherol upon glutamate exposure. In contrast, the mRNA expression of NSE was reduced significantly when treated with TRF, but not tocopherol. At 300 ng of TRF, the NSE expression for both pre- and post-treatment was reduced by 50%. In addition, the concentration of GSH in cells treated with TRF was higher compared to the cells treated with tocopherol. Further results from the histology studies also showed that TRF not only provide a better protection against glutamate, but also able to reduce the number of necrotic and apoptotic cells. When 300 ng of TRF was given to the astrocytes, the percentage of healthy cells increased to 60% for pre-treatment and 30% for post-treatment which indicated that even at nanogram concentration, TRF protects the astrocytes against glutamate induced oxidative stress. On the other hand, high concentration of α-tocopherol showed the pro-oxidant effects which promoted cells death at 300 ng of α-tocopherol which increased the expression of NSE. The percentage of apoptotic and necrotic cell remained high upon tocopherol treatment. The results from the present study demonstrate that tocotrienols, but not α-tocopherol, protect astrocytes against glutamate-induced cells death.
KESAN PERLINDUNGAN VITAMIN E DARIPADA KELAPA SAWIT TERHADAP ASTROSIT YANG DICEDERAKAN OLEH GLUTAMAT

Oleh

IBRAHIM BIN MUSA

Februari 2012

Pengerusi : Huzwah Khaza’ai, PhD
Fakulti : Perubatan dan Sains Kesihatan

Keracunan glutamate merupakan penyebab utama kepada neurodegenerasi di dalam system saraf. Beberapa tahun kebelakangan ini, fraksi kaya tocotrienol (TRF) daripada kelapa sawit didapati mampu melindungi neuron daripada keracunan glutamate. TRF merupakan sejenis ekstrak daripada minyak sawit yang mana ianya terdiri daripada 25% tokoferol dan 75% tokotrienol. TRF telah terbukti memiliki sifat antioksidaan yang kuat, anti-keradangan (anti-inflamasi), anti-kanser, memberi pelindungan saraf serta berupaya mengawal kolestrol. Objektif utama kajian ini adalah bertujuan untuk mengenalpasti pengaruh vitamin E yang diberikan sebelum (pra-rawatan) dan selepas (pasca rawatan) pengeksitoksikan glutamat. Beberapa parameter telah digunakan, antaranya unjian kebertahanan sel, ekspresi mRNA untuk neuron spesifik enolase (NSE), kandungan glutation (GSH) di dalam astrosit, dan morfologi sel. Kebertahanan sel ditentukan melalui ujian MTT. NSE yang merupakan sejenis penanda neurobiologi pula dipantau dengan menggunakan Reaksi Berantai Polimerase Transkripsi Songsang (RT-PCR).
Akhir sekali, morfologi sel diteliti melalui mikroskop pendafluoran dengan menggunakan ujian acridine oren/propidium iodide (AO/PI). Amaun glutamate (180mM) yang digunakan sepanjang kajian ini hanya bertujuan untuk menyebabkan kecederaan kepada astrosit. Terdapat tiga jenis Vitamin E yang digunakan untuk ujian kebertahanan sel iaitu; fraksi kaya tokotrienol (TRF), fraksi tokotrienol yang diperkaya (TEF) dan juga α-tokoferol. Menerusi ujian MTT, 20 peratus sel didapati mati akibat terdedah kepada 180 mM glutamate. Tiada perbezaan yang signifikan (ketara) ke atas kebertahanan sel bagi sel-sel yang dirawat oleh TRF, TEF atau α-tocopherol sebelum atau selepas pendedahan kepada glutamat. Walau bagaimana pun, ekspresi mRNA neuron enolase spesifik (NSE) mengalami penurunan yang ketara apabila dirawat dengan TRF, tetapi tidak dengan tokoferol. Apabila 300 ng TRF diberikan kepada astrosit, ekspresi NSE berkurangan sebanyak 50% untuk pra- dan pasca-rawatan. Kajian histologi pula mendapati bahawa TRF bukan sahaja memberikan perlindungan yang lebih baik terhadap glutamat, bahkan ianya juga mampu bertindak untuk memulihkan sel akibat kecederaan glutamat. Selain daripada itu, jumlah GSH di dalam sel yang dirawat dengan TRF juga lebih tinggi berbanding dengan sel yang dirawat dengan tokoferol. Keputusan daripada kajian histologi menunjukkan bahawa TRF bukan sahaja memberikan perlindungan yang lebih baik terhadap glutamate, malah mampu mengurangkan bilangan sel nekrotik dan apoptotic. Apabila 300 ng TRF diberikan kepada astrosit, bilangan sel sihat telah bertambah sebanyak 60% untuk pra-rawatan dan 30% untuk pasca-rawatan, yang mana menunjukkan bahawa walaupun pada kepekatan serendah nanogram, TRF mampu melindungi astrosit daripada tekanan oksidatif yang disebabkan oleh glutamat. Kadar α-tokoferol yang tinggi pula sebaliknya menunjukkan kesan tindakan pro-oksidaan yang mana akan merangsang kematian sel berbanding
bertindak sebagai perawat dengan peningkatan ekspresi NSE pada aras 300 ng α-tokoferol. Peratusan sel-sel apoptik dan nekrotik pula kekal tinggi apabila dirawat dengan 300 ng α-tokoferol. Daripada hasil kajian ini, didapati hanya tokotrienol memberikan pelindungan kepada astrosit terhadap kesan kematian sel yang dirangsang oleh glutamat tetapi tidak bagi α-tokoferol.
ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious and Merciful,

First and foremost, Alhamdulillah by His Will I am able to finish up the thesis for Master of Science in Biochemistry entitled “PROTECTIVE EFFECTS OF PALM VITAMIN E ON GLUTAMATE-INDUCED INJURY OF ASTROCYTES”. I would like to thank my respectful supervisor, Dr Huzwah Khaza‘ai for all her knowledge, time, understanding as well as guidance and support during the completion of this study. I also would like to express my deepest gratitude to my co-supervisors Assoc. Prof Dr Faridah Yusuf and Dr Zulida Rejali for their support, advice and comments throughout this project. My deep appreciation to Assoc. Prof. Dr. Mohd Sokhini Abd Mutalib for intellectual discussion and scientific advice throughout my study.

Last but never the least, to my family especially my beloved wife Pn Hasnur Hidayah and our son Luqman for their timeless support and prayers, my labmates Ainun, Yap, Aidil, and other staff friends at the Biochemistry, Cells Signaling and Pharmacology labs, for their assistance and to everyone who has helped me. Hopefully I will be able to use all the knowledge and skills that I have gained to improve myself as a future scientist, Insyaallah.
I certify that a Thesis Examination Committee has met on 27th February 2012 to conduct the final examination of Ibrahim bin Musa on his thesis entitled "Protective Effects of Palm Vitamin E on Glutamate-Induced Injury of Astrocytes" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohamad Aziz bin Dollah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Sabrina binti Sukardi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner)

Zuraini binti Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner)

Junedah binti Sanusi, PhD
Associate Professor
Department of Anatomy
Faculty of Medicine
Universiti Malaya
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Huzwah Khaza’ai, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zulida Rejali, MD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Members)

Faridah Yusuf, PhD
Associate Professor
Kulliyyah of Engineering
International Islamic University Malaysia
(Members)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

IBRAHIM BIN MUSA
Date: 27 February 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of the study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Research objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 General objective</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Specific objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Problem statement</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Hypothesis</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEWS</td>
<td></td>
</tr>
<tr>
<td>2.1 Neurodegenerative diseases</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Alzheimer’s disease</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Parkinson’s disease</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Other neurodegenerative disorders</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Nervous system</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Neuronal cells</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Glial cells</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Importance of interaction between glial and neuronal cells</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Metabolic function of nerve cells</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1 Brain energy metabolism</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2 Glucose transporter in brain</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Glycolysis</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 Tricarboxylic acid (TCA) cycle</td>
<td>21</td>
</tr>
<tr>
<td>2.3.5 Pentose phosphate pathway</td>
<td>22</td>
</tr>
<tr>
<td>2.3.6 Glycogen storage in astrocytes</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Glutamate</td>
<td>27</td>
</tr>
<tr>
<td>2.4.1 Glutamate receptors</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 Glutamate transporter</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3 Glutamate excitotoxicity</td>
<td>30</td>
</tr>
<tr>
<td>2.4.4 Glutamate homeostasis</td>
<td>32</td>
</tr>
</tbody>
</table>
2.4.5 Glutamate metabolism 33
2.5 Calcium ion (Ca$^{2+}$) influx mitochondrial dysfunction 35
2.6 Free radicals 38
2.7 Antioxidant 41
2.7.1 Glutathione (GSH) 42
2.7.1.1 GSH synthesis 43
2.8 Vitamin E 46
2.8.1 Tocopherol 47
2.8.2 Tocotrienol 49
2.8.2.1 Anti-cancer 50
2.8.2.2 Cardioprotection 51
2.8.2.3 Antioxidative 53
2.8.2.4 Neuroprotection 55
2.9 Modes of cell death in nerve cells: Apoptosis and necrosis 57
2.10 Biological markers in nerves cells 58

3 MATERIALS AND METHODS
3.1 Materials
3.1.1 Cells culture 60
3.1.2 Cells viability assay 60
3.1.3 RNA extraction 61
3.1.4 Reverse Transcription-Polymerase Chain Reaction 61
3.1.5 Determination of total glutathione concentration and morphological studies 62
3.2 Methods
3.2.1 Preparations of solutions for cells culture 62
3.2.1.1 Complete RPMI1640 growth medium 62
3.2.1.2 Glutamate solution 63
3.2.1.3 Vitamin E preparation 64
3.2.2 Cells culture 64
3.2.2.1 Subculturing of cells 65
3.2.2.2 Hemocytometer and cells counting 66
3.2.2.3 Cells seeding 68
3.2.2.4 Freezing cells for storage 70
3.2.2.5 Recovering cells from liquid nitrogen 71
3.2.3 Cells viability assay 72
3.2.3.1 Dose response study 73
3.2.3.2 Time course study 75
3.2.3.3 Treatment of CRL-2020 astrocytes with vitamin E 75
3.2.4 Neuron specific enolase (NSE) expression 78
3.2.4.1 Primer design 80
3.2.4.2 Cells seeding 81
3.2.4.3 Treatment of CRL-2020 astrocytes with glutamate 81
3.2.4.4 RNA extraction 82
3.2.4.5 Determination of RNA concentration and purity 86
3.2.4.6 Reverse Transcription for cDNA construction 86
3.2.4.7 Polymerase Chain Reaction (PCR) 87
3.2.4.8 Gel electrophoresis 90
3.2.4.9 DNA purification 91
3.2.4.10 DNA Sequencing 92
3.2.4.11 Determination of total glutathione (GSH) concentration 92

3.2.5 To assess mode of cells death upon glutamate injury
3.2.5.1 Cells seeding 95
3.2.5.2 Treatment of CRL-2020 astrocytes with glutamate 95
3.2.5.3 Acridine orange/propidium iodide (AO/PI) assays 96

3.2.6 Statistical analyses 96

4 EFFECTS OF VITAMIN E ON THE CELLS VIABILITY
4.1 Introduction 97
4.2 Objective 98
4.3 Methodology 98
4.4 Results
4.4.1 Dose response of glutamate in astrocytes 99
4.4.2 Time course 100
4.4.3 Effects of vitamin E on cell viability upon exposure to glutamate
4.4.3.1 Pre-treatment of CRL-2020 astrocytes with vitamin E before glutamate exposure 103
4.4.3.2 Post-treatment of CRL-2020 astrocytes with vitamin E upon glutamate exposure 104
4.5 Discussion 105

5 EFFECTS OF VITAMIN E ON THE EXPRESSION OF NEURON SPECIFIC ENOLASE (NSE)
5.1 Introduction 112
5.2 Objectives 113
5.3 Methodology 113
5.4 Results
5.4.1 Gene sequencing of PCR products 114
5.4.2 Pre-treatment of CRL-2020 astrocytes with vitamin E before exposure to 180 mM glutamate 116
5.4.3 Post-treatment of CRL-2020 astrocytes with vitamin E after exposure to 180 mM glutamate 117
5.4.4 Determination of glutathione concentration in injured astrocytes treated with TRF
5.4.4.1 Pre-treatment of CRL-2020 astrocytes 121

xiv
with vitamin E before exposure to glutamate
5.4.4.2 Post-treatment of CRL-2020 astrocytes with vitamin E after exposure to glutamate

5.5 Discussions

6 EFFECTS OF VITAMIN E ON THE CELLS MORPHOLOGY
6.1 Introduction 129
6.2 Objective 130
6.3 Methodology 130
6.4 Results
6.4.1 Pre-treatment of astrocytes with vitamin E 131
 6.4.1.1 Controls 132
 6.4.1.2 Pre-treatment with tocotrienols rich fraction (TRF) 133
 6.4.1.3 Pre-treatment with α-tocopherol 135
6.4.2 Post-treatment of astrocytes with vitamin E 136
 6.4.2.1 Post-treatment with tocotrienols rich fraction (TRF) 136
 6.4.2.2 Post-treatment with α-tocopherol 138
6.5 Discussions 142

7 GENERAL DISCUSSION 150

8 CONCLUSION 159

9 RECOMMENDATION FOR FUTURE STUDIES 160

BIBLIOGRAPHY 161
APPENDICES 188
BIODATA OF STUDENT 196
LIST OF PUBLICATIONS 197