Some results on the gamma function for negative integers.

ABSTRACT

The Gamma function Γ (s)(-r) is defined by Γ (s)(-r) = N - lim $\epsilon \to 0$ $\int \epsilon \infty t$ -r-1, ln s t e -t dt for r, s = 0, 1, 2, . . . , where N is the neutrix having domain N' = $\{\epsilon : 0 < \epsilon < \infty\}$ with negligible functions finite linear sums of the functions $\epsilon \lambda$ ln s-1 ϵ , ln s $\epsilon : \lambda < 0$, s = 1, 2, . . and all functions which converge to zero in the normal sense as CMMI9.-1.epsilon1 tends to zero. In the classical sense Gamma functions is not defined for the negative integer. In this study, it is proved that for r = 1, 2,..., where $\phi(r) = \Sigma r i = 1$ 1/i. Further results are also proved.

Keyword: Gamma function; Neutrix; Neutrix limit.