Approximating Cauchy-type singular integral by an automatic quadrature scheme.

ABSTRACT

An automatic quadrature scheme is developed for the approximate evaluation of the product-type indefinite integral where \(K(t,c) = 1/(t-c) \) and \(f(t) \) is assumed to be a smooth function. In constructing an automatic quadrature scheme, we consider two cases: (1) \(-1 < x < y < 1\), and (2) \(x = -1, y = 1\). In both cases the density function \(f(t) \) is replaced by the truncated Chebyshev polynomial \(p_N(t) \) of the first kind of degree \(N \). The approximation \(p_N(t) \) yields an integration rule \(Q_N(f,x,y,c) \) to the integral \(Q(f,x,y,c) \). Interpolation conditions are imposed to determine the unknown coefficients of the Chebyshev polynomials \(p_N(t) \). Convergence problem of the approximate method is discussed in the classes of function \(C_{N+1, \alpha}[-1,1] \) and \(\mathcal{R}^{N+1, \alpha}[-1,1] \). Numerically, it is found that when the singular point \(c \) either lies in or outside the interval \((x,y)\) or comes closer to the end points of the interval \([-1,1]\), the proposed scheme gives a very good agreement with the exact solution. These results in the line of theoretical findings.

Keyword: Automatic quadrature scheme; Product integral; Singular integral; Clenshaw-curtis rules; Chebyshev polynomials; Indefinite integral; Recurrence relation.