
Pertanika 9(1), 51- 56 (1986)

Newton Polyhedra and p-Adic Estimates of Zeros of Polynomials
in np[x, y]

KAMEL ARIFFIN MOHD ATAN
Mathematics Department,

Faculty of Science and Environmental Studies,
Universiti Pertanian Malaysia,

43400 Serdang, Selangor, Malaysia.

Key words: p-adic estimates, zeros of polynomials, indicator diagrams.

ABSTRAK

Polihedron Newton yang disekutukan dengan suatu polinomial dalam n [x, yJ dzperkenal
kan. Dibuktikan bahawa wujud hubungan antara polihedron Newton dengan perisifar-pensifar poli
nomial yang disekutukan dengannya itu. Hubungan ini digunakan untuk mendapatkan anggaran
p-adic pensifar-pensifar tersebut. Suatu batas atas bagi peringkat p--adic pensifar-pimsifar ini di
perolehi dengan menggunakan kaedah polihedron Newton.

ABSTRACT

Newton polyhedron associated with a polynomial in n pix, yJ is introduced. Existence of a
relationshzp between a Newton polyhedron and zeros of its associated polynomial is proved. This rela
tionshzp is used to arrive at the p-adic estimates of the zeros. An upper bound to the p-adic orders of
these zeros isfound using the Newton polyhedron method.

1. INTRODUCTION

The role of the Newton polygon in obtain
ing properties of zeros of polynomials in one
variable is quite well-known. For example, the
Newton polygon can be usefully applied in
proving Puiseux's theorem (Walker, 1962;
Lefschetz, 1953). A Sathaye (1983) also con
sidered generalised Newton-Puiseux expansion.

In the p-adic case Koblitz (1977) discusses
the Newton polygon method for polynomials and
power series in n [x] where n denotes the

. p. p
completion of the algebraiC closure of the field of
p-adic numbers Q . Here estimates concerning
zeros of polynomia1s are derived from the pro
perties of the associated Newton polygon.
Loxton and Smith (1982) investigated the appli
cation of the Newton polygon technique al
though a different method was eventually used
to arrive at their result.

In this paper we consider extending the
Newton polygon idea in the p-adic case to poly
nomials in two variables and call it the Newton
polyhedron method. We will derive p-adic pro
perties of zeros of such polynomials from their
associated Newton polyhedrons, as asserted in
Theorem 2.1 and Theorem 2.2.

With P denoting a prime, we define the
valuation II on Q as usual. That is

p p

rI p -ordpx if x oF 0Ixlp :c ,

L 0 ifx=O

where ord x denotes the highest power of p
p

dividing x and ord x = ClO if x = O. This valua-
tion extends uniqu~ly from Q to Q. the algeb
raic closure of Q and to n ~ and n is com-
plete and algebrai~allyclosed.

P
p
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Birch and Mc Cann (1967) showed that if
f(x ... , x ) is a polynomial with integral coeffi-

I n

cients and ord (f(a , ... , a» > ord D (f)
pIn p n

where D (f) is the discriminant of f for some
integers ~, ... , a , then there are p-adic

I n

integers a', ... , a such that f( a I' ... , Q )
1 n n

= Oandord (a.- a.) >Ofori = I, ... ,n.
p I I

From the properties of p-adic zeros estab
lished for polynomials in two variables from the
associated Newton polyhedron, we give an
estimate for the p-adic order of zeros of poly
nomials in two variables with coefficients in Q. .

p

Our assertion is as follows. .

Theorem 1.1

By the above definition the Newton poly
hedron of a polynomial fin np[x, y] which we
will denote by N fwill consist of polyhydral faces
possessing edges and vertices on and above which
lie all the points P .. corresponding to each term
T i in f. It is the highest polyhedral surface ob
tained by raising the horizontal plane until it
bends around various points P .. and eventually

lJ
reaches the outermost points P .. which corres-

IJ
pond to the points (i, j) on the classical Newton
polygon of f. Around these points the plane
bends up to form several vertical faces perpendi
cular to the 1 - 2 plane passing through the ter
minal edges determined by the outermost points
P ..

IJ

Led be a polynomial in Q. p [x, y]. Let

for some Q. 13 in Q. where the maximum is
taken over all pairs of ~on-negative integers (r,
s). Then f has a zero ( .~ 0' 1/0 ) in Q~ with
ord p( ~ 0 - Q , 1/ 0 ' - ~ ) = 8 and every zero
( ~, 1/ ) of f ,satisfies ord p ( ~ - Q, 1/ - ~ )

~ 8'

8 = max
r, s

--.-
r + s

{ ord
p

f ( Q, ~)

f (r+5)

- ord
p r!s!

Theorem 2.1

Let p be a .prime and f be a polynomial in
n [x, y]. If ( ~ ,1/) is a zero of f then (ord t
ord p 1/ ,1) is normal to an edge in N f and falls
between the upward-pointing normals to the
faces of N fadjacent to this edge.

n ..
Proof: Let f(x, y) = ~ aoox1yl where the a ..

~ ~

i, j=O
are in n . Let T .. = a.. ~ i 71 j. SiQce ( L 1/) is a
zero of f(i, y) it follows ~bat there are at least two
terms· T ,T say of f( ~ , 1/) Which attain the
minim~ oni

n

, that is ord T = ord T =
f p n p mn

min ord T... hus, the correspppqjng points P
. p IJ n

i, j
and P mn to T nand T mn respectively satisfy the
equation:

i, j
on the plane Z say whose equation is given in (1).

where M = min ord T ... That is P and P lie
p IJ n mn

x ord ~ + Yord 1/ + z = M
p p

Definition 2.1

2. NEWTON POLYHEDRON AND
ZEROS OF A POLYNOMIAL IN

np[x, y]

Let f(x, y) ~aijxiyj be a polynomial
of degree n in n [x, y]. We map the terms T ij =

a· .xiyj off [0 the points P .. = (i, j, ord a ..)
IJ IJ e lJ

in the Euclidean space. The Newton polyhedron
of f is defined to be the lower convex hull of the
set S of points P .. , a < i, J' < n. It is the highest

IJ - -
convex connected surface which passes through
or below the points in S. If a .. = 0 for some (i, j)

lJ

then we take ord a .. = 00 •
P lJ

Since M ~ ord T .. for every O~i, }~n, it
follows that every po~nt '}» .. in S lies on or above
the plane Z, and the line ~~entE joining P to
P mn is either an edge or lies on a face F of N f.nIn
either case E lies in the plane Z. The normal,!! =
(ord ~,ord 1/, 1) to Z is normal to F containing
E. Cfearly!! is normal to at least one of the edges
of F. Further, since N flies above Z, !! must lie
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between the upward-pointing normals to the
faces ofN [adjacent to the edges ofF.

Similarly, by letting

We will prove the converse to the above
theorem. First we have the following lemma.

(0 ~ i ~ n)

Lemma 2.1: Let L be a finite extension of Q .',
p

m n
Let f(x) = L a/ and g(x) = L b/

~O ~O

be polynomials in L[X]. Let A be in Q and let
J..lo = min (ord a.+ iA), J..l]= min (ord b.+

pIP I
i i

i A,). Then there is a ~ in Q. pwith ord p ~ = A
and ord f( ~ ) = J..lo and ord g( ~ ) = J..l] .

p p

where E. >0, the b(Q)are in Land b (0) * 0
and consid~ing I i

as above, we see that ~ can also be chosen to be
the required element in Q. for the polynomial g.

p

Theorem 2.2
Proof: Let K be a finite unramified extension of
L with prime element 1T chosen so that the
residue field is sufficiently large as required
below. Let L be a set of representatives in K for
the residue field. Write

J..l - i:\ + E.
o 1

a. = 1T L
1

Q20

(Q) Q
a. 1T

1
(0:::; i < m)

Let f be a polynomial in Q. [x, y]. Let E be
p

a non-vertical edge of N [common to two ad-
jacent faces F] and F 2' Suppose ~ = ( A, J..l ,1)
is normal to E and lies between the upward
pointing normals to F and F . Then there are

I 2

~ and 1/ in Q. such that ord ~ = A ,ord 1/
p p p

= J..l and f( ~ , 71) = o. .

where E. > 0 and the a~Q)are in L and a. (0)'* O.
1 - 1 1

Consider

where the CQ1are in L and Co *O. Then

J..lo J..l
f(~) = 1f E~O a

i
(0) Co

i + 0(1f 0 + 1 ).
J

If the residue field is sufficiently large, we can
find Cdin L so that

1: a. (0) C i $ 0 (mod 1T)
E, =0 1 0

1

and this gives the required ~ in Q for the p@ly-
. p

nomial f.

Proof: Let f(x, y) = L aij xi yj and let V and
i, j n

V mn be the end-points of the edge E on N f' Then

e = (m - r, n - s, ord a - ord a ) is a
~ p mn p rs

vector from V to V
rs ron

Choose ~ , 71 in 7'\ with ord ~ = A
~p p ,

ord 1/ = j..l. We show first that the terms cor-
p •

respondmg to V and V dominate in f( ~ .71).
Since n is orthog;nal to e~~e have

'" '"

(m - r) ord ~ + (n - s)'ord 71 + ord a -
p p p mn

ord a = 0, that is
p rs

Let El and £J! be the upward-pointing
normals to the faces F] and F 2 respectively,
normalised to have third component equal to 1.
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Since ~ is in the plane of ~,l and ~2 and lies
between them, we can write

n = 'Y.n + (1 - ''Y)n
2,....., ....... 1 .......

with 0 ~ 'Y ~ 1.

Let V ij be any point in N fand let ~ be the
vector from V to V .. ' From the definition of N f'

n IJ
the line segment from V to V .. lies on or above

n 11

the planes determined by F I and F 2' Sp, we have

~. ~ = 'Y ~';:I + (l - 'Y) ~. E22: 0 ,

that is

oed a.. ~i or? > ord a "r.,.,s.
p 1) - P TS <; '/

Hence, as asserted

ord a ~r 71s = ord a ~m 71n
p TS P mn

= min oed a.. ~i or?
p 1)

ij

(2) We can suppose r :f m. Otherwise the same
argument applies after interchanging x and y.
Choose 71 in Q with ord 71 = fJ. as specified

p p
below, and write

g(x) = [(x, 'T}) = ~ c
k

(71)Xk

k

where
ck (71) = ~ aki or?

J
By part (I), ord a 71s = min ord a. 71)

p n p ~

j
and ord a 71 n = min ord a . 71 j. By Lemma

p ron • p rnJ

J
(2.1) we can choose 'T} in Q. p with ord

p
71 = fJ.

so that ord c ('T}) = ord a 71' and ord c (71)
pr prs pm

= ord a 'T} n. Using (1) again, we have
p mn

ord c (71) + A.r = ord c (71) + Am
p rpm

~ ord c (71) + Ak, for each k. Thus the line
segme~t joining the points (r, ord pC r (71» and
(m, ord p c m,('T})) having slope -A, is part of the
Newton polygon of g(x). By a standard theorem
(see Koblitz (1977) lemma 4, page 90), therefore,
there is a ~ in Q with ord ~ = A and g( ~ )

p p

= O. This choice of ~ and 71 satisfies the
requirements of the theorem.

3. p-adic ESTIMATE OF ZEROS OF A
POLYNOMIAL IN n [x, y]

p

Definition 3.1

Let ( fJ. j' Ai' 1) be the normalised upward
pointing normals to the faces F iof N f' of a poly
nomial f(x, y) in n [x, y). We map ( fJ., A, 1)
to the point, ( fJ. i' A:) in the x - y plane. 'If F ;and
F s are adjacent faces in N f' sharing a common
edge, we construct the straight line joining (u

A r) and (fJ. s' AJ If F rshares a common edg~'
with a vertical face F say a x + By = 'Y in N f
we construct the straight line segment joining
( 11 r' A') and the appropriate point at infinity
that corresponds to the normal of F, that is the
segment along a line with slope - a / B . We call
the set of lines so obtained the Indicator diagram
associated with N f'

Hence by the above definition if ( fJ., A) is a
point lying on the straight line segment joining

( J,ll ' Al ) and ( 112 ' A~) say in the Indicator
diagram of an f then (p, A, 1) is normal to the
common edge of the faces to which ( Ill' \' 1. )
and ( fJ.

2
' A2 , I ) are normal. It follows by

Theorem 2.2 that the point ( fJ., A ) gives the
p-adie order of a zero ( t 'T} ) of the associated
polynomial f.

Dejz'nitz'on 3.2

We call the segment in an Indicator
diagram of an N fthat corresponds to the initial
edges passing through the vertical axis in R ~, the
initial segments of the Indicator diagram.

Let [(x, y) = ~ aji- xi yi be a polyno
ij

mial in n p [x, y) of degree n, and let a ij =
ord a -' ord a ... Then the equation of an initial

poop IJ
segment of the indicator diagram associated
with N fis of the form rx + sy = a' n obtained by
considering the relationships of normals (x, y, 1)
to the edges 00£ n of N f which join the points
Voo:(O,O,ord a 0) and V : (r, S, ord a ).

p 0 rs p TS
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(1)By making use of the Newton polyhedron
method we give the following theorem.

Theorem 3.1

11m ~l1j

for every j, 1 ~ j ~ k. By considering the equa
tion of Q, there are r ., s .such that

J J J

Let f(x, y) = k a ;jX i yjbe a polynomial in
i, j

Q [x, y] and let
p

[) = max _1_._
r s (r + s),

(ord aoo - ord a )
p p rs

aoo
11 =-- ord aj

L + S. P r.s.
J J J J

Then, clearly by (I),

The above theorem is a special case of
Theorem 1.1 whose proof is as follows.

By the convexity of the set of initial segments in
the Indicator diagram associated with N I' for
every point (11., A..) in the initial segments Q.,
~~~ J J J

(2)

(3)

11m = max
I. + S.
J J

for every j, j :j: m. By Theorem 2.2 and Defini
tion 3.1 there exist ~ , 1/ in 7'\ such that

o 0 x p
ord ~ = J.1 ,ord 11 = 11 and f( ~ , .,., )

d' 0 m p 0 m 0" 0

= ,and there are ~., 1/. in Q with ord ~ .
J ! P P J

= 11.0rd 1/.= A..andt(~.. A.)=O. Our
J P J J J J.

assertIOn then follows from (2), (3) and letting
[) = J.1 m .

where the maximum is taken over all pairs (r, s).
Then f has a zero (~ , 1/ ) in Q,2 with

o 0 p

ord (~ , 1/ ) = 5 and every zero ( t , 1/ )
p 0 0 t;

satisfies ord ( ~, 1/) ~ [) .
p

Proof: We note first that the maximum defining

[) occurs for an initial edge in N f' Let 00 E r.s. and
JJ

E denote a pair of initial edges common
00 r s

j+' j + 1
to an inItIal face F in N fsuch that by the con-
vexity of N -and thJ consecutive ordering of the

{

initial edges,

Let Q. denote the segments in the Indicator
diagr~m corresponding to the edges ooE r in N ..

jSj J

Thus Q and Q in the Indicator diagram as-
j j+ I

sociated with N fare adjacent segments sharing a
common vertex. Now the equation of Q; is given
by

rr+s) (a, ~) Xr yS

r!s!

LX + S.y = a
IlL S.

1 1
r.

where a r = ord a 0 - ord a . Since ..2. >
r
j
5

j
pOp rj5j S.

~+l J

S ' t. is steeper than Q. + l' As this is true
j+l J J

for every j, 1 ~ j ~ k say, the set of initial seg-
ments in the Indicator diagram associated with
N fhas a convex shape. The line y = x intersects
some initial segment Q say, at a point (J.1 '
J.1 ). Also, for every j,mj :j: m the line y = mx

int;rsects lines Q. produced at some points ( J.1,
JJ

r r r
m+t < m < m-t

11). Since -- - -- it follows that
J s s S

m+t m m-t

J.1m > I1m - t , I1m + t foreveryt, 0 < t < m,
rri + t ~ k. Hence

Proof of Theorem 1.1. Let g(X, Y) be the
resulting polynomial on expanding f(X + a, Y
+ ~ ) using Taylor's theorem. That is,

g(X, Y) = rea, ~) + ~

r,s~O

(r,s) '*' (0, 0)

By Theorem 3.1 there are 'Y" 'Y 2in Q,p such
that f( 'Y, 'Y) = 0 and ord ('Y "V) = [)

'2 P ,'I 2
and every zero (X', Y') of g satisfies ord (X',
Y') ~ [). P

Set ~ 0 = 'Y, + a, 1/ 0 = 'Y 2 + ~ and ~

= X' + a, 1/ = Y' + ~ . Then ( ~ , 1/) and
(t 1/) are zeroes of f satisfying the require~ents
of the theorem.
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