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ABSTRAK

Polihedron Newton yang disekutukan dengan suatu polinomial dalam  [x, y] diperkenal-
kan. Dibuktikan bahawa wujud hubungan antara polihedron Newton dengan penfsz'far—penszfar poli-
nomial yang disekutukan dengannya itu. Hubungan ini digunakan untuk mendapatkan anggaran
p-adic pensifar-pensifar tersebut. Suatu batas atas bagi peringkat p-adic pensifar-pensifar ini di-
perolehi dengan menggunakan kaedah polihedron Newton.

ABSTRACT

Newton polyhedron associated with a polynomial in  Q [x, y] is introduced. Existence of a
relationship between a Newton polyhedron and zeros of its associated polynomaial is proved. This rela-
tionship is used to arrive at the p-adic estimates of the zeros. An upper bound to the p-adic orders of

these zeros is found using the Newton polyhedron method.

1. INTRODUCTION

The role of the Newton polygon in obtain-
ing properties of zeros of polynomials in one
variable is quite well-known. For example, the
Newton polygon can be usefully applied in
proving Puiseux’s theorem (Walker, 1962;
Lefschetz, 1953). A Sathaye (1983) also con-
sidered generalised Newton-Puiseux expansion.

In the p-adic case Koblitz (1977) discusses
the Newton polygon method for polynomials and
power series in Qp [x] where QP denotes the
completion of the algebraic closure of the field of
p-adic numbers Q . Here estimates concerning
zeros of polynomiaPls are derived from the pro-
perties of the associated Newton polygon.
Loxton and Smith (1982) investigated the appli-
cation of the Newton polygon technique al-
though a different method was eventually used
to arrive at their result.

In this paper we consider extending the
Newton polygon idea in the p-adic case to poly-
nomials in two variables and call it the Newton
polyhedron method. We will derive p-adic pro-
perties of zeros of such polynomials from their
associated Newton polyhedrons, as asserted in
Theorem 2.1 and Theorem 2.2.

With p denoting a prime, we define the
valuation || ,onQ asusual. That is

—ord_x
|xlp - [ P p

|4 wol

where ord . X denotes the highest power of p
dividing x and ordpx =oo if x = 0. This valua-
tion extends uniquely from Q to Q _the algeb-
raic closure of Q -+ and to Qp, and Qpis com-
plete and algebraically closed.

ifx#0
if x=0
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Birch and Mc Cann (1967) showed that if
f(x, ....x )isa polynomial with integral coeffi-
cients and ord (f(a,, ..., a ) >ord D (P
where D (f) is the dxscnmmant of f for some
integers a , ..., a_, then there are p-adic
integers a oy O such that f( @, s O‘n)
= Oandord (a - a ) >0fori = 1

From the properties of p-adic zeros estab-
lished for polynomials in two variables from the
associated Newton polyhedron, we give an
estimate for the p-adic order of zeros of poly-
nomials in two variables with coefficients in Q
Our assertion is as follows.

Theorem 1.1
Let f be a polynomial in Q . [%, y]. Let

1
& = max
,s rt+s

{ordp f(a,p)

(r+s)

— ord M
Poqls!

for some @, f in Q . where the maximum is
taken over all pairs of non-negative integers (r,
s). Then f has a zero (£, 7,) in Qz with
ord(g’ -a,n, ﬁ)- 5andeveryzero
(&, n)off,satlsﬁesord(g’—a n-8)

o

2. NEWTON POLYHEDRON AND
ZEROS OF A POLYNOMIAL IN
Qp[x, yl

Definition 2.1

Let f(x, y) = 28 xiyl  bea polynomial

of degree n in Q [x y]. We map the terms T,

aux‘yJ of  to the points P = (i, j, ord a. )
in the Euclidean space. The Newton polyhe(ir
of f is defined to be the lower convex hull of the
set S of points P, O <1i,j S < n. It is the highest
convex connected surface which passes through
or below the points in S. If a,=0 for some (i, j)
then we take ord oAy T

By the above definition the Newton poly-
hedron of a polynomial f in _Szp[x, y] which we
will denote by N will consist of polyhydral faces
possessing edges and vertices on and above which
lie all the points P correspondmg to each term
T, in f. It is the hlghmt polyhedral surface ob-
tained by raising the horizontal plane until it
bends around various points P_and eventually
reaches the outermost points P. which corres-
pond to the points (i, j) on the cljassmal Newton
polygon of f. Around these points the plane
bends up to form several vertical faces perpendi-
cular to the 1—2 plane passing through the ter-

minal edges determined by the outermost points
P

ij"

Theorem 2.1

Let p be a prime and f be a polynomial in

[x, y]. If (&, M) is a zero of f then (ord £,
ord '7,1) is normal to an edge in N and falls
between the upward-pointing normals to the
faces of N adjacent to this edge.

Proof: Let f(x, y) = £

i) j=0
are in Qp Let T =a_£'ni Since( £, n)isa
zero of f(x, y) it foﬁows tilat there are at least two
terms- T , T say of f( £, n) which attain the
minimum ord , that is orde =ord T =

min ord T hus, the correspending pom?.: o

aijx‘y' where the a

Y

and P_ to T and T _ respectively satisfy the
equation:
xordpE+yordpﬂ+z=M (1)

where M = min ord T ThatisP _and P_ lie
ij
on the plane Z say whose equation is given in (1).

Since M < ord T _ for every 0<Ti, j<n, it
follows that every pognt m S lies on or above
the plane Z, and the line segment E joining P _to
P iseither an edge or lies on a face Fof N . "In
either case E lies in the plane Z. The normal g_ =
(ord %, ord m, 1) to Z is normal to F containing
E. Clearly u 1s normal to at least one of the edges
of F. Further, since N lies above Z, u must lie
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between the upward-pointing normals to the
faces of N adjacent to the edges of F.

We will prove the converse to the above
theorem. First we have the following lemma.

Lemma 2.1: Let L be a finite extension of Q ot

m . n .
Letf(x) = £ ax andg(x)= I bx
i=0 i=0

be polynomials in L[X]. Let A be in Q and let
My = m.in (ordpai P k), p = min (ordpbi +
i i
i A). Then thereisa £inQ withord &= X
P P
andordpf( £) = K, andordpg( £ = u .

Proof: Let K be a finite unramified extension of
L with prime element 7 chosen so that the
residue field is sufficiently large as required
below. Let Z be a set of representatives in K for
the residue field. Write

p =ikt

®

where ¢, 2 0 and the a,
Consider

are in Z and ai(o"qt 0.

§=n>‘ 7370 & 7r‘Z
20

where the CQ.are in 2 and Co # 0. Then

i) = ©

=0 % © Coi ¥ 0(7"“0 s )-
i

If the residue field is sufficiently large, we can
find Cjin ¥ so that

g) 1o
e?:=0 a, © C, % 0 (mod m)
1

and this gives the required ¢ in @ _for the poly-
nomial f.

Similarly, by letting

b. L g
i i

where e >0, the bgg)are in Zandb @ #0
and considering

g=rd 2 cpad
0

as above, we see that £ can also be chosen to be
the required element in Q pfor the polynomial g.

Theorem 2.2

Let f be a polynomial in Q _[x, y]. Let E be
a non-vertical edge of N common to two ad-
jacent faces F : and F2. Suppose n = (A
is normal to E and lies between the upward-
pointing normals to F and F,. Then there are
£ and 7 in Q such that ord E= 1, ord 7
= M andf( £, n) = 0.

Proof: Let f(x,y) = Z & x! YJ andlet V .and
ij
V _.be the end-points of the edge Eon N . Then

e=(m—r,n—s,ord a
S p mn

—ord a )isa
p TS
vector from V to V
s mn

Choose £ , 7 in prith ord ¢ =
ord o= M. We show first that the terms cor-

respondmg toV and V__dominate in f( £,7).
Since n is orthogonal to e ‘e have

(m—r)ord £+ (n—s)ord n+ ord R ™
ord a—O thatls
£

- .
ordpa“ £ETnt= ordpam

Let n, and p, be the upward-pointing
normals to the faces F and ¥ respectively,
normalised to have third component equal to 1.
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Since n is in the plane of n  and n, and lies
between them, we can write

n="Ta +(1-7)g,
with0 < Y<1.

Let V_ be any point in N and let v be the
vector from V _toV . From the deﬁmnon of N,

the line segment fro;n V _toV_lies on or above
the planes determined by F and F . So, we have

v.n=7v.nl+(l—7)i.£220,

that is
ordpalJ gy > ord a o

Hence, as asserted

£Fn=ord_ a

ordp a o 3mn

Em nn
mm ordp 3, £,
1

1]

(2) We can suppose r  + m. Otherwise the same
argument applies after interchanging x and y.
Choose 7 in prith ordp n = M as specified
below, and write

g(x) = f(x, n) = kE ¢, (mx*
where )
ck (n) = E akj 77J
J .
By part (1), ordpars n° = min ordparj n’

J
and ordpamn n "= min ordpamj n'. By Lemma
]
(2.1) we can choose 7 in Q_ with ord NS4k
so that ord c, (M) = ord a_ ‘n *and ord c. (n)

= ord o n . Using (1) again, we have"

ord c M+ Ar = ordpcm (m) + Am
gord C (17) + Kk, for each k. Thus the line
segment ]ommg the points (r, ord c_(n)) and
(m, ord c . (n)) having slope -\, is part of the
Newton polygon of g(x). By a standard theorem
(see Koblitz (1977) lemma 4, page 90), therefore,
there is a Einprithordp £ =\ andg(f)

= 0. This choice of £ and 7 satisfies the
requirements of the theorem.

3. p-adic ESTIMATE OF ZEROS OF A
POLYNOMIAL IN QP [x, yl

Definition 3.1

Let(u, A ;» 1) be the normalised upward-
pointing normals to the faces F,of N , of a poly-
nomial f(x, y) in Q [x, y]. We map ( B, A,1)
to the point( u , AP) in the x —y plane. If F and
F are adJacent faces in N o sharing a common
edge, we construct the straight line joining (u

N,) and (u, A). If F shares a common edge
with a vertical face Fsay ax + fy = 7 in N,
we construct the straight line segment joining
(# , X)) and the appropriate point at infinity
that corresponds to the normal of F, that is the
segment along a line with slope — o/ 3 . We call
the set of lines so obtained the Indicator diagram
associated with N .

Hence by the above definition if ( u, A)isa
point lying on the straight line segment joining
(M 5N )and (4, , 7\ ) say in the Indicator
diagram of an N then (}1, A, 1)is normal to the
common edge of the faces to which ( T )\l , 1)
and ( Ky A,, 1) are normal. It follows by
Theorem 2.2 that the point (4, A ) gives the
p-adic order of a zero ( £, n ) of the associated
polynomial f.

Definition 3.2

We call the segment in an Indicator
diagram of an N that corresponds to the initial
edges passing through the vertical axis in R *, the
initial segments of the Indicator diagram.

Let f(x,y)=2 aij_xi y' be a polyno-

iy

mialin £ [x,y] of degree n, and leta =

ord .2, — ord ,;;- Then the equation of an initial
segment of the Indicator diagram associated

with N is of the form rx + sy = & obtained by

considering the relationships of normals (x, y, 1)

to the edges ,,E _of N which join the points

VAL 02 ordpaoo) and Vrs: (x)'s; ordp ars).
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By making use of the Newton polyhedron
method we give the following theorem.

Theorem 3.1

Let f(x,y) = 2 aijxiyjbe a polynomial in

i,j
Q p[x, y] and let
8 = max G (ordp a, — ordp a)
1,8

where the maximum is taken over all pairs (r, s).
Then f has a zero (¢, n ) in Q2 with
ord (E,n ) = Sandeveryzero(g n)
satisfies ord ( g n)<L56.

Proof: We note first that the maximum defining
8 occurs for an initial edge in N . Let . E_and

: e 3
denote a pair of initial edges common
e ) ! j +1
5
to an iniual face F in N such that by the con-
vexity ofN and the consecuuve ordering of the

initial edges

3> Gm,

S0 i
Let £ denote the segments in the Indicator
diagram corresponding to the edges . E in N.
Thus Qi and an in the Indicator diagrlalm as-

sociated with N are adjacent segments sharing a
common vertex. Now the equation of £ is given
by

I.X +8y =«
L ! I. S,

i
I.

: i
where ar =ord a_, —ord a__.Since — >
rs P | L S.

r ii 11 j]
i+l
Sie1

for every j, 1 < j £ ksay, the set of initial seg-

ments in the Indicator diagram associated with

N has a convex shape. The line y = x intersects

some initial segment .Qm. say, at a point (u,

u ). Also, for every j, j + m the liney = x

intersects lines Qj produced at some points ( M

l is steeper than Q . As this is true

rm+t < rm < 1'm—
m+t Sm m-—t

foreveryt, 0 <t < m,

it follows that

u J.). Since

Hm > Bt Fm+t
m + t < k.Hence

By 2 K, (1)

for every j, 1 < j < k. By considering the equa-
tion of QJ, there are T, sjsuch that

Then, clearly by (1),

1 a

00

ordp ary (2)

#m = max .+ S r.s.

TR T i
By the convexity of the set of initial segments in
the Indicator diagram associated with N , for
every point ( N J,) in the initial segments ¢ ,
we have J

ip SuTnIGY Ao ®)
]

for every j, j ¥ m. By Theorem 2.2 and Defini-
tion 3.1 there exist & o ,in Q such that

ord £ vord 7 u and f( b 50
: and there are £, n.in with ord E
= Mord n = . and%(é *)—0 Our

assertlnon then Jfollows from (2) (3) ‘and letting
6 =pu,

The above theorem is a special case of
Theorem 1.1 whose proof is as follows.

Proof of Theorem 1.1. Let g(X, Y) be the
resulting polynomial on expanding (X + a, Y
+ B ) using Taylor’s theorem. That is,

gX,Y)=fla, B)+ = %) (o g) X7y

r,s>0 rls!

(rs) + (0, 0)
By Theorem 3.1 there are i & 5 I Q such
that f( v, 'y)—Oandord(‘y )—8

and every zero (X', Y') of g sansﬁes ord (X’
Y") < 8.

Set £ = v, +a, n =y, t fand§
= X' +0Ln—Y + B.Then( £, M )and
(£, m) are zeroes of f satisfying the requlrements
of the theorem.
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CONCLUSION

Theorems 2.1 and 2.2 assert the existence of
relationships between zeros of polynomials in
€ [x, y] and their associated Newton polyhedra.
This relationship is already well-known for one-
variable polynomials with coefficients in .
Newton polyhedra associated with polynomiais
in two variables with coefficients in ) is treated
in more detail in Mohd Atan (1984). The result
of Theorem 1.1 gives an improvement to a result
by Birch and McCann (1967) for polynomials in
two variables.
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