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ABSTRAK

Polihedron Newton yang disekutukan dengan suatu polinomial dalam n [x, yJ dzperkenal­
kan. Dibuktikan bahawa wujud hubungan antara polihedron Newton dengan perisifar-pensifar poli­
nomial yang disekutukan dengannya itu. Hubungan ini digunakan untuk mendapatkan anggaran
p-adic pensifar-pensifar tersebut. Suatu batas atas bagi peringkat p--adic pensifar-pimsifar ini di­
perolehi dengan menggunakan kaedah polihedron Newton.

ABSTRACT

Newton polyhedron associated with a polynomial in n pix, yJ is introduced. Existence of a
relationshzp between a Newton polyhedron and zeros of its associated polynomial is proved. This rela­
tionshzp is used to arrive at the p-adic estimates of the zeros. An upper bound to the p-adic orders of
these zeros isfound using the Newton polyhedron method.

1. INTRODUCTION

The role of the Newton polygon in obtain­
ing properties of zeros of polynomials in one
variable is quite well-known. For example, the
Newton polygon can be usefully applied in
proving Puiseux's theorem (Walker, 1962;
Lefschetz, 1953). A Sathaye (1983) also con­
sidered generalised Newton-Puiseux expansion.

In the p-adic case Koblitz (1977) discusses
the Newton polygon method for polynomials and
power series in n [x] where n denotes the

. p. p
completion of the algebraiC closure of the field of
p-adic numbers Q . Here estimates concerning
zeros of polynomia1s are derived from the pro­
perties of the associated Newton polygon.
Loxton and Smith (1982) investigated the appli­
cation of the Newton polygon technique al­
though a different method was eventually used
to arrive at their result.

In this paper we consider extending the
Newton polygon idea in the p-adic case to poly­
nomials in two variables and call it the Newton
polyhedron method. We will derive p-adic pro­
perties of zeros of such polynomials from their
associated Newton polyhedrons, as asserted in
Theorem 2.1 and Theorem 2.2.

With P denoting a prime, we define the
valuation II on Q as usual. That is

p p

rI p -ordpx if x oF 0Ixlp :c ,

L 0 ifx=O

where ord x denotes the highest power of p
p

dividing x and ord x = ClO if x = O. This valua-
tion extends uniqu~ly from Q to Q. the algeb­
raic closure of Q and to n ~ and n is com-
plete and algebrai~allyclosed.

P
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Birch and Mc Cann (1967) showed that if
f(x ... , x ) is a polynomial with integral coeffi-

I n

cients and ord (f(a , ... , a» > ord D (f)
pIn p n

where D (f) is the discriminant of f for some
integers ~, ... , a , then there are p-adic

I n

integers a', ... , a such that f( a I' ... , Q )
1 n n

= Oandord (a.- a.) >Ofori = I, ... ,n.
p I I

From the properties of p-adic zeros estab­
lished for polynomials in two variables from the
associated Newton polyhedron, we give an
estimate for the p-adic order of zeros of poly­
nomials in two variables with coefficients in Q. .

p

Our assertion is as follows. .

Theorem 1.1

By the above definition the Newton poly­
hedron of a polynomial fin np[x, y] which we
will denote by N fwill consist of polyhydral faces
possessing edges and vertices on and above which
lie all the points P .. corresponding to each term
T i in f. It is the highest polyhedral surface ob­
tained by raising the horizontal plane until it
bends around various points P .. and eventually

lJ
reaches the outermost points P .. which corres-

IJ
pond to the points (i, j) on the classical Newton
polygon of f. Around these points the plane
bends up to form several vertical faces perpendi­
cular to the 1 - 2 plane passing through the ter­
minal edges determined by the outermost points
P ..

IJ

Led be a polynomial in Q. p [x, y]. Let

for some Q. 13 in Q. where the maximum is
taken over all pairs of ~on-negative integers (r,
s). Then f has a zero ( .~ 0' 1/0 ) in Q~ with
ord p( ~ 0 - Q , 1/ 0 ' - ~ ) = 8 and every zero
( ~, 1/ ) of f ,satisfies ord p ( ~ - Q, 1/ - ~ )

~ 8'

8 = max
r, s

--.-
r + s

{ ord
p

f ( Q, ~)

f (r+5)

- ord
p r!s!

Theorem 2.1

Let p be a .prime and f be a polynomial in
n [x, y]. If ( ~ ,1/) is a zero of f then (ord t
ord p 1/ ,1) is normal to an edge in N f and falls
between the upward-pointing normals to the
faces of N fadjacent to this edge.

n ..
Proof: Let f(x, y) = ~ aoox1yl where the a ..

~ ~

i, j=O
are in n . Let T .. = a.. ~ i 71 j. SiQce ( L 1/) is a
zero of f(i, y) it follows ~bat there are at least two
terms· T ,T say of f( ~ , 1/) Which attain the
minim~ oni

n

, that is ord T = ord T =
f p n p mn

min ord T... hus, the correspppqjng points P
. p IJ n

i, j
and P mn to T nand T mn respectively satisfy the
equation:

i, j
on the plane Z say whose equation is given in (1).

where M = min ord T ... That is P and P lie
p IJ n mn

x ord ~ + Yord 1/ + z = M
p p

Definition 2.1

2. NEWTON POLYHEDRON AND
ZEROS OF A POLYNOMIAL IN

np[x, y]

Let f(x, y) ~aijxiyj be a polynomial
of degree n in n [x, y]. We map the terms T ij =

a· .xiyj off [0 the points P .. = (i, j, ord a ..)
IJ IJ e lJ

in the Euclidean space. The Newton polyhedron
of f is defined to be the lower convex hull of the
set S of points P .. , a < i, J' < n. It is the highest

IJ - -
convex connected surface which passes through
or below the points in S. If a .. = 0 for some (i, j)

lJ

then we take ord a .. = 00 •
P lJ

Since M ~ ord T .. for every O~i, }~n, it
follows that every po~nt '}» .. in S lies on or above
the plane Z, and the line ~~entE joining P to
P mn is either an edge or lies on a face F of N f.nIn
either case E lies in the plane Z. The normal,!! =
(ord ~,ord 1/, 1) to Z is normal to F containing
E. Cfearly!! is normal to at least one of the edges
of F. Further, since N flies above Z, !! must lie
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between the upward-pointing normals to the
faces ofN [adjacent to the edges ofF.

Similarly, by letting

We will prove the converse to the above
theorem. First we have the following lemma.

(0 ~ i ~ n)

Lemma 2.1: Let L be a finite extension of Q .',
p

m n
Let f(x) = L a/ and g(x) = L b/

~O ~O

be polynomials in L[X]. Let A be in Q and let
J..lo = min (ord a.+ iA), J..l]= min (ord b.+

pIP I
i i

i A,). Then there is a ~ in Q. pwith ord p ~ = A
and ord f( ~ ) = J..lo and ord g( ~ ) = J..l] .

p p

where E. >0, the b(Q)are in Land b (0) * 0
and consid~ing I i

as above, we see that ~ can also be chosen to be
the required element in Q. for the polynomial g.

p

Theorem 2.2
Proof: Let K be a finite unramified extension of
L with prime element 1T chosen so that the
residue field is sufficiently large as required
below. Let L be a set of representatives in K for
the residue field. Write

J..l - i:\ + E.
o 1

a. = 1T L
1

Q20

(Q) Q
a. 1T

1
(0:::; i < m)

Let f be a polynomial in Q. [x, y]. Let E be
p

a non-vertical edge of N [common to two ad-
jacent faces F] and F 2' Suppose ~ = ( A, J..l ,1)
is normal to E and lies between the upward­
pointing normals to F and F . Then there are

I 2

~ and 1/ in Q. such that ord ~ = A ,ord 1/
p p p

= J..l and f( ~ , 71) = o. .

where E. > 0 and the a~Q)are in L and a. (0)'* O.
1 - 1 1

Consider

where the CQ1are in L and Co *O. Then

J..lo J..l
f(~) = 1f E~O a

i
(0) Co

i + 0(1f 0 + 1 ).
J

If the residue field is sufficiently large, we can
find Cdin L so that

1: a. (0) C i $ 0 (mod 1T)
E, =0 1 0

1

and this gives the required ~ in Q for the p@ly-
. p

nomial f.

Proof: Let f(x, y) = L aij xi yj and let V and
i, j n

V mn be the end-points of the edge E on N f' Then

e = (m - r, n - s, ord a - ord a ) is a
~ p mn p rs

vector from V to V
rs ron

Choose ~ , 71 in 7'\ with ord ~ = A
~p p ,

ord 1/ = j..l. We show first that the terms cor-
p •

respondmg to V and V dominate in f( ~ .71).
Since n is orthog;nal to e~~e have

'" '"

(m - r) ord ~ + (n - s)'ord 71 + ord a -
p p p mn

ord a = 0, that is
p rs

Let El and £J! be the upward-pointing
normals to the faces F] and F 2 respectively,
normalised to have third component equal to 1.
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Since ~ is in the plane of ~,l and ~2 and lies
between them, we can write

n = 'Y.n + (1 - ''Y)n
2,....., ....... 1 .......

with 0 ~ 'Y ~ 1.

Let V ij be any point in N fand let ~ be the
vector from V to V .. ' From the definition of N f'

n IJ
the line segment from V to V .. lies on or above

n 11

the planes determined by F I and F 2' Sp, we have

~. ~ = 'Y ~';:I + (l - 'Y) ~. E22: 0 ,

that is

oed a.. ~i or? > ord a "r.,.,s.
p 1) - P TS <; '/

Hence, as asserted

ord a ~r 71s = ord a ~m 71n
p TS P mn

= min oed a.. ~i or?
p 1)

ij

(2) We can suppose r :f m. Otherwise the same
argument applies after interchanging x and y.
Choose 71 in Q with ord 71 = fJ. as specified

p p
below, and write

g(x) = [(x, 'T}) = ~ c
k

(71)Xk

k

where
ck (71) = ~ aki or?

J
By part (I), ord a 71s = min ord a. 71)

p n p ~

j
and ord a 71 n = min ord a . 71 j. By Lemma

p ron • p rnJ

J
(2.1) we can choose 'T} in Q. p with ord

p
71 = fJ.

so that ord c ('T}) = ord a 71' and ord c (71)
pr prs pm

= ord a 'T} n. Using (1) again, we have
p mn

ord c (71) + A.r = ord c (71) + Am
p rpm

~ ord c (71) + Ak, for each k. Thus the line
segme~t joining the points (r, ord pC r (71» and
(m, ord p c m,('T})) having slope -A, is part of the
Newton polygon of g(x). By a standard theorem
(see Koblitz (1977) lemma 4, page 90), therefore,
there is a ~ in Q with ord ~ = A and g( ~ )

p p

= O. This choice of ~ and 71 satisfies the
requirements of the theorem.

3. p-adic ESTIMATE OF ZEROS OF A
POLYNOMIAL IN n [x, y]

p

Definition 3.1

Let ( fJ. j' Ai' 1) be the normalised upward­
pointing normals to the faces F iof N f' of a poly­
nomial f(x, y) in n [x, y). We map ( fJ., A, 1)
to the point, ( fJ. i' A:) in the x - y plane. 'If F ;and
F s are adjacent faces in N f' sharing a common
edge, we construct the straight line joining (u

A r) and (fJ. s' AJ If F rshares a common edg~'
with a vertical face F say a x + By = 'Y in N f
we construct the straight line segment joining
( 11 r' A') and the appropriate point at infinity
that corresponds to the normal of F, that is the
segment along a line with slope - a / B . We call
the set of lines so obtained the Indicator diagram
associated with N f'

Hence by the above definition if ( fJ., A) is a
point lying on the straight line segment joining

( J,ll ' Al ) and ( 112 ' A~) say in the Indicator
diagram of an f then (p, A, 1) is normal to the
common edge of the faces to which ( Ill' \' 1. )
and ( fJ.

2
' A2 , I ) are normal. It follows by

Theorem 2.2 that the point ( fJ., A ) gives the
p-adie order of a zero ( t 'T} ) of the associated
polynomial f.

Dejz'nitz'on 3.2

We call the segment in an Indicator
diagram of an N fthat corresponds to the initial
edges passing through the vertical axis in R ~, the
initial segments of the Indicator diagram.

Let [(x, y) = ~ aji- xi yi be a polyno­
ij

mial in n p [x, y) of degree n, and let a ij =
ord a -' ord a ... Then the equation of an initial

poop IJ
segment of the indicator diagram associated
with N fis of the form rx + sy = a' n obtained by
considering the relationships of normals (x, y, 1)
to the edges 00£ n of N f which join the points
Voo:(O,O,ord a 0) and V : (r, S, ord a ).

p 0 rs p TS

54 PERTANIKA VOL. 9NO.l, 1986



NEWTON POLYHEDRA AND p-ADIC ESTIMATES OF ZEROS OF POLYNOMIALS IN np [x, y]

(1)By making use of the Newton polyhedron
method we give the following theorem.

Theorem 3.1

11m ~l1j

for every j, 1 ~ j ~ k. By considering the equa­
tion of Q, there are r ., s .such that

J J J

Let f(x, y) = k a ;jX i yjbe a polynomial in
i, j

Q [x, y] and let
p

[) = max _1_._
r s (r + s),

(ord aoo - ord a )
p p rs

aoo
11 =-- ord aj

L + S. P r.s.
J J J J

Then, clearly by (I),

The above theorem is a special case of
Theorem 1.1 whose proof is as follows.

By the convexity of the set of initial segments in
the Indicator diagram associated with N I' for
every point (11., A..) in the initial segments Q.,
~~~ J J J

(2)

(3)

11m = max
I. + S.
J J

for every j, j :j: m. By Theorem 2.2 and Defini­
tion 3.1 there exist ~ , 1/ in 7'\ such that

o 0 x p
ord ~ = J.1 ,ord 11 = 11 and f( ~ , .,., )

d' 0 m p 0 m 0" 0

= ,and there are ~., 1/. in Q with ord ~ .
J ! P P J

= 11.0rd 1/.= A..andt(~.. A.)=O. Our
J P J J J J.

assertIOn then follows from (2), (3) and letting
[) = J.1 m .

where the maximum is taken over all pairs (r, s).
Then f has a zero (~ , 1/ ) in Q,2 with

o 0 p

ord (~ , 1/ ) = 5 and every zero ( t , 1/ )
p 0 0 t;

satisfies ord ( ~, 1/) ~ [) .
p

Proof: We note first that the maximum defining

[) occurs for an initial edge in N f' Let 00 E r.s. and
JJ

E denote a pair of initial edges common
00 r s

j+' j + 1
to an inItIal face F in N fsuch that by the con-
vexity of N -and thJ consecutive ordering of the

{

initial edges,

Let Q. denote the segments in the Indicator
diagr~m corresponding to the edges ooE r in N ..

jSj J

Thus Q and Q in the Indicator diagram as-
j j+ I

sociated with N fare adjacent segments sharing a
common vertex. Now the equation of Q; is given
by

rr+s) (a, ~) Xr yS

r!s!

LX + S.y = a
IlL S.

1 1
r.

where a r = ord a 0 - ord a . Since ..2. >
r
j
5

j
pOp rj5j S.

~+l J

S ' t. is steeper than Q. + l' As this is true
j+l J J

for every j, 1 ~ j ~ k say, the set of initial seg-
ments in the Indicator diagram associated with
N fhas a convex shape. The line y = x intersects
some initial segment Q say, at a point (J.1 '
J.1 ). Also, for every j,mj :j: m the line y = mx

int;rsects lines Q. produced at some points ( J.1,
JJ

r r r
m+t < m < m-t

11). Since -- - -- it follows that
J s s S

m+t m m-t

J.1m > I1m - t , I1m + t foreveryt, 0 < t < m,
rri + t ~ k. Hence

Proof of Theorem 1.1. Let g(X, Y) be the
resulting polynomial on expanding f(X + a, Y
+ ~ ) using Taylor's theorem. That is,

g(X, Y) = rea, ~) + ~

r,s~O

(r,s) '*' (0, 0)

By Theorem 3.1 there are 'Y" 'Y 2in Q,p such
that f( 'Y, 'Y) = 0 and ord ('Y "V) = [)

'2 P ,'I 2
and every zero (X', Y') of g satisfies ord (X',
Y') ~ [). P

Set ~ 0 = 'Y, + a, 1/ 0 = 'Y 2 + ~ and ~

= X' + a, 1/ = Y' + ~ . Then ( ~ , 1/) and
(t 1/) are zeroes of f satisfying the require~ents
of the theorem.
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