EFFECTS OF DIETARY SUPPLEMENTATION OF VITAMINE E,
ANDROGRAPHIS PANICULATA NEES AND CURCUMA LONGA L. ON
GROWTH, CARCASS AND MEAT QUALITY OF GOATS

MORTEZA KARAMI

FP 2010 33
EFFECTS OF DIETARY SUPPLEMENTATION OF VITAMINE E, ANDROGRAPHIS PANICULATA NEES AND CURCUMA LONGA L. ON GROWTH, CARCASS AND MEAT QUALITY OF GOATS

By

MORTEZA KARAMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2010
DEDICATION

MY FATHER AND MOTHER,
MY WIFE AND CHILDREN
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF DIETARY SUPPLEMENTATION OF VITAMINE E, ANDROGRAPHIS PANICULATA NEES AND CURCUMA LONGA L. ON GROWTH, CARCASS AND MEAT QUALITY OF GOATS

By

MORTEZA KARAMI

July 2010

Chairman: Professor Abdul Razak Alimon, PhD

Faculty: Agriculture

An investigation in the first experiment was carried out to determine the effects of dietary supplementation of Andrographis paniculata, Curcumin longa and vitamin E on growth performance, carcass characteristics, meat quality, antioxidant activity and fatty acid profiles of Kacang crossbred male goats. Thirty-two male goats (13.0±0.29kg) were assigned to four dietary treatments of eight goats each. The diets were basal – control (CN), and basal supplemented with 400 mg/kg vitamin E (VE), 0.5 percent turmeric powder (TU) or 0.5 percent Andrographis paniculata powder (AP). Feeding was ad libitum as a total mixed ration for 16 weeks (including two weeks adaptation). After 14 weeks, the goats were slaughtered according to the Halal method and the carcass split two parts (right and left). The longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) muscles were taken. The muscles were vacuum- packaged and conditioned for 0, 7 and 14 days in a chiller at 4°C. The feed intake was lower (P<0.05) for the AP than TU treatment, while the feed efficiency was higher (P<0.05) in the AP than the CN treatment, as well as total meat in the
carcass and the rib eye muscle area. The percentage of cooking loss in the AP treatment was lower than CN in the fresh IS muscle (P<0.05). The Warner–Bratzler shear force (WBSF) value was reduced by the dietary supplementation in fresh LD (P<0.05). The effects of post mortem aging periods on the WBSF values in BF and IS muscles of goats fed AP treatment were significant. The dietary antioxidant supplementation treatments had significant effects on the L* (lightness), a* (redness), b* (yellowness) values, Chroma and Hue angle (P<0.05) in the LD, IS and BF muscles at different post mortem periods. AP and TU supplemented diets significantly reduced the WBSF value in LD (0day) and AP effect on IS (7 and 14 days). The AP and TU treatment improved the tenderness of BF muscle in different post mortem aging periods. The dietary antioxidant supplementation had significant effects on 2-thiobarbituric acid reactive substance (TBARS) values at 7 days (LD and IS) and 14 days (LD, IS and BF). The unsaturated fatty acids (UFA) in BF and IS muscles were significantly higher (p<0.05) in goats fed the AP diet compared to the other diets.

In the second experiment was conducted to examine the effect of varying levels of AP and TU on the growth performance, carcass characteristics and meat quality of goats. Each treatment received one of the five diets based on the diet formulation in the first experiment. The diets were basal – control (CN), and basal supplemented with 0.25% AP (AP0.25), 0.75% AP (AP0.075), 0.25% TU (TU0.25) and 0.75% TU (TU0.75). Goat slaughtering and muscle sampling procedures were as in the first experiment. The final weight, average daily weight gain, feed to gain ratio, gain to dry matter intake percent, hot and cold carcass weight, dressing out percentage, were not significantly (P>0.05) affected by different levels of AP and TU supplemented
diets. The goats fed the AP 0.75% supplemented diet had a higher feed efficiency than the goats fed the basal diet (P>0.05), apparently due to a decreased feed intake. The AP0.75 treatment produced a more desirable leaner carcass with a higher proportion of meat and lower weight of subcutaneous fat and a bigger rib eye muscle area than the CN treatment (P<0.05) which is related to the lower back fat adipose and internal body fat (P<0.05). The AP and TU levels significantly affected the L*, b*, chroma value and Hue angle at different post mortem aging periods in the LD, IS and BF muscles (P<0.05). Different dietary levels of AP and TU significantly (P<0.05) improved tenderness of the muscles and post mortem aging periods significantly (P<0.05) reduce the WBSF value of chevon. Results of a sensory panel evaluation showed that AP and TU levels significantly (P<0.05) affected the aroma, tenderness, juiciness and overall acceptability of the chevon. All the experimental diets reduced the TBARS value in all the three muscles. The different levels of AP and TU also reduced (P<0.01) the TBARS value in the blood plasma of goats. It can be concluded that supplementing basal diets with herbs and spices containing antioxidants resulted in a general improvement of meat quality and retardation of lipid oxidation compared to the control diet. Some polyunsaturated fatty acids (PUFA) especially PUFA n-3, in BS, IS and LD and also in blood plasma, tended to increase with increasing AP supplementation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN-KESAN SUPPLEMEN DIET DENGAN VITAMIN E, HEMPEDU BUMI, DAN KUNYIT PADA PERTUMBUHAN, KARKAS DAN KUALITI DAGING KAMBING

Oleh

MORTEZA KARAMI

Julai 2010

Pengerusi : Professor Dr. Abdul Razak Alimon, PhD

Fakulti : Pertanian

Satu kajian telah dijalankan untuk meneliti kesan suplementasi diet dengan sumber antioksidan, *Andrographis paniculata*, *Curcumin longa* and vitamin E, keatas prestasi pertumbuhan, ciri-ciri karkas, kualiti daging, aktiviti antioksidan dan profil asid lemak, pada kambing kaecukan Kacang. Tiga puluh dua ekor kambing jantan (13.0±0.29kg) dibahagikan kepada empat diet rawatan dengan lapan ekor kambing dalam setiap rawatan. Diet itu ialah asas - kumpulan kawalan (CN), dan asas ditambah dengan 400 mg/kg Vitamin E (VE), 0.5% serbuk kunyit (TU) atau 0.5% serbuk *Andrographis paniculata* (AP). Pemberian makanan adalah secara *ad libitum* berterusan selama 16 minggu (termasuk dua minggu penyesuaian) dengan jumlah ratio yang dicampur. Selepas 14 minggu, haiwan kajian disembelih berdasarkan kaedah Halal dan pemotongan karkas kepada dua bahagian (kanan dan kiri). Otot-otot longissimus dorsi (LD), Infraspinatus (IS) dan biceps femoris (BF) diambil. Sampel otot tersebut disimpan secara vakum – bungkus untuk selama 0, 7 dan 14 hari dalam penyejuk pada suhu 4 ºC. Pengambilan makanan adalah lebih rendah
(P<0.05) untuk rawatan AP berbanding rawatan TU, manakala efisiensi makanan (FE) rawatan AP secara signifikan lebih tinggi daripada rawatan CN. Peratusan jumlah daging pada karkas dan tempat otot mata tulang rusuk adalah lebih tinggi (P <0.05) untuk rawatan AP berbanding rawatan CN. Peratus kehilangan memasak pada otot segar IS menurun secara signifikan pada rawatan AP berbanding CN (P<0.05). Nilai gaya ricih Warner-Bratzler pada otot segar LD adalah menurun (P<0.05) dengan penambahan antioksidan dalam makanan. Kesan penuaan waktu posmortem untuk kambing yang diberi rawatan AP pada nilai WBSF dalam otot BF dan IS adalah signifikan. Penambahan antioksidan dalam diet rawatan itu memberi kesan signifikan ke atas L* (ringan), a* (kemerahan), b* (kekuningan) dan juga sudut "Chroma and Hue" (P<0.05) dalam otot TD, IS dan BF pada penuaan waktu posmortem yang berlainan. Nilai WBSF dalam otot LD (0day) menurun signifikan dengan pemberian diet suplemen AP dan TU dan kesan AP pada otot IS (7 and 14 days). Rawatan AP dan TU meningkatkan tegangan otot BF pada berlainan waktu penuaan posmortem. Diet rawatan dengan penambahan antioksidan mempunyai kesan yang signifikan pada nilai substansi reaktif asid thiobarbituric (TBARS) pada 7 hari (LD and IS) dan 14 hari (LD, IS and BF). Kandungan asid lemak taktepu dalam otot BF dan IS adalah lebih tinggi signifikan (p<0.05) pada kambing dalam perawatan diet AP berbanding dengan kambing dalam rawatan yang lain.

Experimen yang kedua telah dilaksanakan untuk menentukan kesan aras AP dan TU yang berbeza keatas prestasi pertumbuhan dan cirri-ciri karkas pada kambing Kacang. Tiga puluh ekor anak-anak kacukan kambing Kacang jantan (13.2±0.4kg) ditugaskan untuk lima rawatan makanan dengan enam ekor kambing setiap rawatan. Setiap rawatan menerima salah satu daripada lima diet berdasarkan padan formulasi.
diet di eksperimen pertama. Rawatan diets adalah Basal - kontrol (CN), and Basal ditambah 0.25% AP (AP0.25), 0.75% AP (AP0.075), 0.25% TU (TU0.25) and 0.75% TU (TU0.75). Pada akhir percubaan kambing disembelih dan sample otot diambil mengikut kaedah yang dihuraikan dalam experiment pertama. Rawatan diets adalah Basal - kontrol (CN), and Basal ditambah 0.25% AP (AP0.25), 0.75% AP (AP0.075), 0.25% TU (TU0.25) and 0.75% TU (TU0.75). Pada akhir percubaan kambing disembelih dan sample otot diambil mengikut kaedah yang dihuraikan dalam experiment pertama. Berat badan terakhir, penambahan berat badan harian, nisbah makanan kepada penambahan, peratusan penambahan kepada pengambilan bahan kering, berat panas dan dingin berat karkas dan peratusan daging tidak dipengaruhi oleh penambahan diet pelbagai peringkat AP dan TU. Kambing yang diberi makanan dengan 0.75% AP mempamerkan efficien makanan yang lebih tinggi (P>0.05) berbanding kumpulan diet asas, menunjukkan kesan pengurangan pengambilan makanan. Rawatan AP0.75 menghasilkan karkas yang lebih baik dengan peratusan daging yang lebih tinggi dan rendah lemak. Selain daripada itu, potongan otot longissimus (tempat otot mata tulang rusuk dan dept) lebih baik daripada rawatan CN (P <0.05) dan ini berkaaitan dengan lebih rendah lemak tubuh dalam adipo bahagian bawah belakang dan lemak dalam badan (P<0.05). rawatan diet AP 0.75 dari diet CN dan TU0.75. Tahap TU dan AP memberi signifikan kesan pada L*, b*, nilai kroma dan sudut Hue pada berlainan waktu penuaan posmortem di otot LD, IS dan BF otot (P <0.05). Tahap diet antioksidan suplemen AP dan TU yang bebeza mempunyai pengaruh signifikan (P<0.05) pada kelembutan otot dan waktu penuaan posmortem memberi signifikan kesan mengurangkan nilai WBSF pada daging kambing. Keputusan bahawa kepekaan rasa panel evaluasi menunjukkan tahap AP dan TU signifikan mempengaruhi aroma,
kelembutan, juiciness, dan keseluruhan menerima daing kambing. Melainkan rasa. Semua percubaan diet mempunyai kesan signifikan pada nilai dan mengurangkan TBARS lipid oxidataion dalam otot berbeza. Berlainan tahap AP dan TU mengurangkan (P<0.01) nilai TBARS dalam darah plasma darah kambing. Itu menyimpulkan bahawa supplemen diet asas dengan antioksidan umumnya meningkatkan kualiti daging dan kestabilan lemak oksidaan daging berbanding dengan kawalan makan diet. Sejumlah asid lemak tak tepu (PUFA) iaitu n-3 PUFA, dalam BS, IS and LD, dan juga dalam plasma darah, menunjukkan peningkatan dengan meningkatnya tambahan AP.
ACKNOWLEDGEMENTS

Glory and praise to Allah (SWT), the Omnipotent, Omniscient and Omnipresent, for opening the doors of opportunity for me throughout my life and for giving me the strength and health to achieve what I have so far.

First and foremost, I would like to express my utmost gratitude to my highly respected supervisor, Prof. Dr. Abd Razak Alimon, Chairman of my Supervisory Committee, for his advice, invaluable guidance, hospitality, support and encouragement throughout the period of the study. I would like to express my deepest thanks and gratitude to Dr. Goh Yong Meng and Dr. Awis Qurni Sazili for their suggestions and guidance towards the completion of this study.

I would also like to extend my thanks to the Head of Department, all lecturers and all staff members of the Department of Animal Science, Faculty of Agriculture and also Faculty of Veterinary Medicine, especially Physiology laboratory members and the staff of School of Graduate Studies of Universiti Putra Malaysia for helping me in one way or another during the course of my study at UPM. I would like to acknowledge Miss Shohada and the staff of the ruminant farm at UPM for their kind cooperation and help in keeping the goats and collection of the samples for this study.

My deepest gratitude to my mother and father who advised and supported me in my pursuit for higher education and academic excellence and expressed understanding and consideration towards me. Words cannot express my gratitude for their love,
support, and patience that have sustained me during my life and study. What can I say, except “Thank you”.

My heartfelt thanks and appreciation go to my understanding wife and my children Negin and Mohammad Amin, whom I am indebted for their sacrifice, patience and understanding, throughout the course of my study. My deepest appreciation to my father, mother in law, my brothers, sisters, and their families for their kindness.

Special thanks to my friends, Iranians, Malaysians, and those from other places, in particular Dr. Farshad Zamani, Dr. Mohammad Ali Talebi, Dr. Mahmood Vatankhah, Dr. GholamReza Shadnoush, Eng. Ravanbakhsh Raesian, Mahdi Ebrahimi, AbdolReza Solimani, Mohammad Houshmand, Mokhtar Mohajer, Syed Reza Hashemi, Mohammad Ramin, Saeid Navid, Arash Javanmard, Alireza Majidi, Dr. Kourosh J Khaledi, Dr. Ahmad Sadeghi, Dr. Mohammad Hasan Vakilpour, Dr. Reza Bagherian, and others for their helps.

My great appreciation to the Ministry of Jihad Agriculture, my colleagues in Shahrekord Research Center of Iran for their support throughout study.
I certify that a Thesis Examination Committee has met on 30 July 2010 to conduct the final examination of Morteza Karami on his Doctor of Philosophy thesis entitled “Effects of dietary supplementation of vitamin E, *Andrographis Paniculata* Nees and *Curcuma Longa* L. on growth, carcass and meat quality of goats” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy (PhD).

Members of the Examination Committee are as follows:

Ismail Idris, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Zainal Aznam Mohd Jelan, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mohamed Ali Rajion, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Egil Robert Orskov, PhD
Professor
The Macaulay Land Use Research Institute
Aberdeen University
United Kingdom
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Abdul Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Goh Yong Meng, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Awis Qurni Sazili, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 October 2010
DECLARATION

I hereby declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

MORTEZA KARAMI

Date: 30 July 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1. **GENERAL INTRODUCTION**
 - 1.1 Research Objectives
 - 1

2. **LITERATURE REVIEW**
 - 2.1 Malaysian Goat Industry
 - 2.2 Goat Meat
 - 2.2.1 Consumption of Goat Meat
 - 2.2.2 Production Characteristics of Meat Goats
 - 2.3 Growth Performance and Carcass Characteristics of Goats
 - 2.3.1 Factors Affecting Meat Quality
 - 2.4 Carcass Characteristics
 - 2.4.1 Meat Quality and Evaluation
 - 2.4.2 Muscle Lipids and Meat Quality
 - 2.4.3 Fatty Acids and Goat Meat
 - 2.4.4 Meat Fatty Acids
 - 2.5 Lipid Oxidation
 - 2.5.1 Definition
 - 2.5.2 Lipid Oxidation in Muscles
 - 2.5.3 Process of Lipid Oxidation in Meat
 - 2.5.4 Lipid Oxidation and Thiobarbituric Acid Reactive Substances (TBARS)
 - 2.6 Antioxidants
 - 2.6.1 Definition
 - 2.6.2 Common Antioxidants
 - 2.6.3 Synthetic Antioxidants
 - 2.6.4 Natural Antioxidants
 - 2.7 Vitamin E
 - 2.7.1 Vitamin E as an Antioxidant
 - 2.7.2 Vitamin E as Supplement in Diets
 - 2.7.3 Vitamin E and Color Stability
 - 2.7.4 Vitamin E and Lipid Oxidation
 - 2.7.5 Additional Benefits of Vitamin E
2.8 Andrographis (Andrographis panicula) 34
 2.8.1 Chemical Composition of Andrographis paniculata 35
 2.8.2 Andrographis paniculata and Lipid Oxidation 37
2.9 Turmeric (Curcumin Longa) 37
 2.9.1 Chemical Composition of Turmeric 39
 2.9.2 Turmeric and Lipid Oxidation 40
2.10 Meat Quality 41
 2.10.1 pH 41
 2.10.2 Color 42
 2.10.3 Water Holding Capacity 45
 2.10.4 Tenderness 48
 2.10.4.1 Warner Bratzler Shear Force 50
 2.10.5 Sensory Evaluation 51
3 GENERAL MATERIALS AND METHODS 54
 3.1 Introduction 54
 3.2 Chronological Scheduling of Experiments 54
 3.3 Animals and Diets 55
 3.4 Animal Housing and Management 57
 3.5 Blood Sampling 57
 3.6 Slaughtering procedure 58
 3.7 Measurements of Carcass pH 58
 3.8 Carcass Sampling 59
 3.9 Carcass Cuts 60
 3.10 Chemical Composition Analysis (Proximate Analysis of Diets) 61
 3.11 Meat Quality 62
 3.11.1 Color Characteristics Determination 62
 3.11.2 Water Holding Capacity 63
 3.11.3 Texture Analysis 64
 3.12 Fatty Acid Profile 65
 3.12.1 Preparation of Fatty Acid Methyl Esters (FAME) 65
 3.12.2 Gas Liquid Chromatography 66
 3.13 Lipid Oxidation Measurement with TBARS 67
 3.14 Statistical Analysis 67
4 EFFECTS OF VITAMIN E, ANDROGRAPHIS PANICULATA AND TURMERIC ON GROWTH AND MEAT QUALITY OF GOATS 69
 4.1 Introduction 69
 4.2 Objectives 70
 4.3 Materials and Methods 71
 4.3.1 Animals, Diets and Management 71
 4.3.2 Blood Sampling 72
 4.3.3 Feed Sampling 72
 4.3.4 Slaughter and Carcass Sampling 75
 4.3.5 Lipid Extraction and Fatty Acids Analysis 75
 4.3.6 Lipid Phase Antioxidant Activity (TBARS) 76
 4.4 Statistical Analysis 76
 4.5 Results 77
4.5.1 Growth performance
4.5.2 Carcass characteristics
4.5.3 Rib Eye Muscle Characteristics
4.5.4 Carcass pH
4.5.5 Meat Quality Characteristics
4.5.6 Color
4.5.7 Water Holding Capacity
4.5.8 Tenderness (Warner–Bratzler shear force)
4.5.9 Lipid Oxidation in Meat and Plasma
4.5.10 Fatty Acids in Muscles

4.6 Discussion
4.6.1 Effects on Growth and Carcass Characteristics
4.6.2 Effects on Meat Color
4.6.3 Effects on Water Holding Capacity
4.6.4 Effects on Warner–Bratzler shear force
4.6.5 Effects on Lipid Oxidation in Meat
4.6.6 Effect on Fatty Acid Composition in Muscles

4.9 Conclusion

5 EFFECTS OF DIFFERENT LEVELS OF ANDROGRAPHIS PANICULATA AND TURMERIC ON GROWTH, CARCASS AND MEAT QUALITY OF GOAT

5.1 Introduction
5.2 Objectives
5.3 Materials and Methods
5.3.1 Animals, Diets and Management
5.3.2 Blood and Feed Sampling
5.3.3 Slaughter and Carcass Sampling
5.3.4 Lipid Extraction and Fatty Acids Analysis
5.3.5 Lipid Phase Antioxidant Activity (TBARS)
5.3.6 Sensory Evaluation of Chevon
5.4 Statistical Analysis
5.5 Results
5.5.1 Effects of Different Treatments on Feedlot Performance
5.5.2 Carcass Characteristics
5.5.3 Carcass pH
5.5.4 Meat Quality Characteristics of Chevon
5.5.5 Color
5.5.6 Water Holding Capacity
5.5.7 Tenderness (Warner–Bratzler shear force)
5.5.8 Lipid Oxidation in Chevon and Blood Plasma (TBARS)
5.5.9 Fatty Acids in Muscles
5.5.10 Sensory Evaluation of chevon
5.6 Discussion
5.6.1 Effects on Growth and Carcass Composition
5.6.2 Effects of AP and TU Levels on Meat Color
5.6.3 Effects of AP and TU Levels on Water Holding Capacity
5.6.4 Effects of AP and TU levels on Tenderness
5.6.5 Effects of AP and TU levels on Lipid Oxidation