UNIVERSITI PUTRA MALAYSIA

PROPERTIES OF KENAF (*HIBISCUS CANNABINUS* L.) FIBERS AND HANDSHEETS FOR LINERBOARD PRODUCTION

AHMAD AZIZI MOSSELLO

IPTPH 2010 3
PROPERTIES OF KENAF (*HIBISCUS CANNABINUS* L.) FIBERS AND HANDSHEETS FOR LINERBOARD PRODUCTION

By

AHMAD AZIZI MOSELLO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of the Doctor of Philosophy

December 2010
DEDICATION

Dedicated to:

Mohammad Bahman Beigi (1921-2010)

Pioneer nomadic education in Iranian communities
In Malaysia, almost 50% of the total paper consumption comes from packaging paper such as kraft liner and medium corrugated. However, there is no local production of kraft pulp in Malaysia and this poses the highest potential for imports. On the other hand, the government of Malaysia has actively encouraged the paper and paperboard industry to enhance self-sufficiency. The insufficiency in the supply of fiber for papermaking has necessitated the paper industry to search for alternative fiber. Kenaf has been identified as one of the potential sources for pulp fibers and some research have been carried out on locally available kenaf in the production of pulp and paper. The study was done in four steps to evaluate the suitability of Malaysian cultivated kenaf for linerboard production. First, the chemical and morphological properties of kenaf fractions were characterized. The chemical and morphological analysis indicated that bast and core fibers were significantly different. The core fraction with short and wide fibers had
higher lignin, hemicelluloses and lower cellulose compared to the long and slender fiber in the bast fractions. In the second step, the pulping properties of different fractions of kenaf (core, bast, and whole stem) were studied. The pulping result showed that kenaf fractions gave high pulp yield (54.2-58.4%) with environment friendly soda-AQ pulping process at mild cooking condition. In comparison to core fibers, bast fibers were relatively easy to delignify and produced paper at higher freeness, lower drainage time and lower strength properties except for tear index. Moreover, due to higher freeness and lower drainage time, bast fibers had the potential to develop strength. Core pulp due to very low freeness and high drainage time was used as unbeaten pulp. Whole stem kenaf showed intermediate properties between core and bast. In the third step, pulp fractionation and sequence selective process was carried out as a new approach to use kenaf whole stem for paper and paperboard production. The result showed that fractionation and sequence selective process made a good opportunity to better beating and fibrillation long fiber at higher level of PFI revolution and remixing with unbeaten short fiber and produced paper with significantly higher strength and better drainability than unfractionated beaten whole stem. In the final part of this study, kenaf whole stem pulps were used to improve old corrugated containers board (OCC). The blending experiments led to the conclusion that fractionated pulp had better effect in the improvement of OCC than unfractionated pulp. In this part, kenaf whole stem pulps were compared to unbleached softwood kraft pulp and mechanical treatment (beating) to improve OCC. The result showed that addition 5-10% fractionated whole stem or unbleached softwood kraft pulp improved OCC properties same as when it was beaten with 2000 PFI revolution. Nonetheless, with better tear index and drainability. The overall conclusion is that, using whole stem, rather than separating the kenaf into bast and core fractions may reduce fiber supply costs for kenaf significantly which would represent a problem for the
commercialization of the raw material. The extra processing steps involved in separation and pulping keeps kenaf from competing effectively with wood. The results discussed above demonstrate that most respects (strength properties and drainability) the whole stems are good for linerboard production or OCC improvement when fractionation and sequence selective process is used to improve strength properties.
SIFAT-SIFAT GENTIAN DAN KERTAS DARIPADA KENAF (HIBISCUS CANNABINUS L.) UNTUK PENGENLARAN BODLINER

Oleh

AHMAD AZIZI MOSSELLO

Disember 2010

Pengerusi : Prof. Madya. Jalaluddin Harun, PhD

Institut : Institut Perhutanan Tropika dan Produk Hutan

kebolehan aliran yang lebih baik. Kesimpulannya, dengan menggunakan keseluruhan stem, daripada memisahkan kenaf kepada pecahan kulit dan stem boleh mengurangkan kos bekalan gentian kenaf secara signifikan yang mana merupakan masalah pengkomersilan bahan mentah ini. Langkah-langkah pemprosesan tambahan, dan kos tambahan dua pemulpaan meletakkan kenaf berupaya bersaing dengan pemprosesan menggunakan sumber kayu. Sebagaimana data yang telah dibincangkan di atas menunjukkan bahawa dalam kebanyakan segi (sifat-sifat kekuatan dan kebolehan aliran) keseluruhan stem adalah lebih baik untuk pengeluaran bodliner atau pemulihan OCC apabila pemisahan dan proses pemilihan turutan digunakan untuk membaiki sifat-sifat kekuatan.

ACKNOWLEDGEMENTS

I have gained four years of challenges during my study at Universiti Putra Malaysia (UPM). Within these years, I enriched my experiences, not only in academics, but also in my interpersonal, and communication skills. My stay at UPM helped me to expand my horizon from
East to West and South to North. For all these, I must thank Shiraz University, Iran for giving me the opportunity to study abroad. I also extend my thanks to the Institute of Tropical Forestry and Forest Products, UPM for accepting me as one of their PhD students.

I equally wish to express my deep sense of appreciation and gratitude to my supervisor, Dr. Jalaluddin Harun. His constant support and encouragement helped me to press on until the research written and completed. I am also grateful to my advisory committee members, Dr. Paridah Md Tahir, Dr. Rushdan Ibrahim, Dr. Hossien Resalati, and Dr. Seyeed Rashid Fallah Shamsi for their recommendation and guidance in the course of writing the thesis.

My sincere thanks extend to Dr. Mohd Nor Mohd Yusoff for his valuable guidance and discussion during my experimental work. I would also like to thank Dr. Rushdan Ibrahim and Dr. Ainun Zuriyati Mohamed @ Asa’ari for their scientific and editorial comments in the writing of the thesis and various manuscripts, written in the last four years.

I would like to express utmost thanks to the staffs of the Institute of Tropical Forestry and Forest Products (INTROP), Pulp and Paper Laboratory of Faculty of Forestry, Electron Microscope Unit of Institute of Bioscience (IBS), Laboratory of Wood Chemistry Division of Forest Research Institute Malaysia (FRIM), and Malaysian Palm Oil Board (MPOB) for the positive and dynamic working atmosphere. My special thanks are due to Mrs. Kamazira Md Basiri, En. Harmaen Ahmad Saffian, and Mrs. Nazlia Girun from INTROP for their official coordination during my PhD stage.
I would like to express utmost thanks to the Economic Planning Unit of the Prime Minister’s Department Malaysia (EPU) for the financial support, National Kenaf and Tobacco Board (NKTB), Malaysia for providing kenaf, Pascorp Paper Berhad, Malaysia for providing old corrugated containers (OCC) pulp, and Mazanderan Wood and Paper Industries (MWPI), Iran for providing unbleached softwood kraft pulp.

I am thankful to all my colleagues in Shiraz University, Iran especially Dr. Mohamma Hadi Sadeghi, Dr. Mansoor Sayyari, Dr. Yahya Emam, Dr. Seyed Ali Abtahi, Dr. Alimorad Hassanli, Dr. Mazda Kompani Zare, Dr. Masoud Masoudi, Dr. Mansour Taghvei, Mr. Mohsen Edalat, Mr. Hariri, Mr. Ali Dehghani, Mr. Ahmad Timnak, and Mrs. Rastegar for their kind administrative and moral support.

Finally, words are not enough to express my gratitude to my family for their patience and perseverance during my absence and for keeping me warm though far away from the country. I owe a lot to my mother and my parents in law for accepting the inconveniences of my absence during my study. They have been a constant source of encouragement. I am especially grateful to my dear wife Malike Kefayat Farshidnejad for her love, moral support and the patience of my mother and our children. And above all, praise is to the Merciful Allah, who has enabled me to accomplish this hectic course in sound health.
I certify that a Thesis Examination Committee has met on 22nd December 2010 to conduct the final examination of Ahmad Azizi Mossello on his thesis entitled “Properties of Linerboard from Kenaf (Hibiscus cannabinus) Fibers” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the University [P.U.(A) 106] 15 March 1998. The Committee recommends that that the student is awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

LUQMAN CHUAH ABDULLAH, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

MOHD HAMAMI SHARI, PhD
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jalaluddin Harun, PhD
Associate Professor
Institute of Tropical Forestry and Forest Products
Universiti Putra Malaysia
(Chairman)

Hossein Resalati, PhD
Associate Professor
Faculty of Forestry and Wood Technology
Gorgan University of Agricultural and Natural Resources
(Member)
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also, declare that is it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
</tbody>
</table>
1.1 Availability of Raw Material to Pulp and Paper Industry 1
1.2 Non-wood Plant Fibers Characteristics 2
1.3 Non-wood Fibers Uses in Papermaking 3
1.4 Kenaf for Papermaking 5
1.5 Linerboard 6
1.6 Problem Statement 6
1.7 Research Objectives 9
1.8 Organization of Thesis 10

2 LITERATURE REVIEW 11

2.1 Kenaf 11
 2.1.1 History of Kenaf as Source of Paper Production Fiber 11
 2.1.2 Characteristic of Kenaf Plant 13
 2.1.3 Chemical Composition of Kenaf 15
2.2 Pulping 22
 2.2.1 Overview of Pulping Methods 22
 2.2.2 Soda-AQ Pulping 28
2.3 Beating 31
2.4 Fractionation and Consequent Selective Process 39
2.5 Recycled Fiber 43
2.6 Linerboard 47

3 MATERIALS AND METHODS 49

3.1 Kenaf Procurement 49
3.2 Chemical Characterization 50
 3.2.1 Sampling for Chemical Analysis 50
 3.2.2 Organic Compositions 50
 3.2.3 Inorganic Composition 50
3.3 Observation of Fiber Morphology 51
 3.3.1 Sampling for Fiber Characterization 51
 3.3.2 Fiber Dimension and Derived Values 51
3.4 Pulping 52
 3.4.1 Sampling for Pulping 52
 3.4.2 Soda-AQ Pulping 53
 3.4.3 Pulping Characterization 53
 3.4.4 Handsheets Formation 55
 3.4.5 Standard Drainage Time 57
 3.4.6 Paper Characterization 57
3.5 Fractionation and Sequence Selective Process 61
 3.5.1 Kenaf Whole Stem Pulp Fractionation 61
 3.5.2 Beating and Remixing 63
 3.5.3 Paper Characterization 63
 3.5.4 Pulp Fiber Evaluation 65
3.6 Comparison Kenaf Pulps versus Unbleached Softwood Pulp
 3.6.1 Optimization of Kenaf Bast Pulp
 3.6.2 Beating Unbleached Softwood Kraft Pulp
 3.6.3 Paper Characterization
3.7 Comparison Kenaf Whole Stem Pulps with Unbleached Softwood Kraft Pulp and Beating to Improve OCC
 3.7.1 Optimization of OCC Pulp
 3.7.2 Addition Virgin Pulps to Unbeaten OCC Pulp
3.8 Electron Microscope Observation
 3.8.1 Environmental Scanning Electron Microscope (ESEM)
 3.8.2 Scanning Electron Microscope (SEM)

4 RESULTS AND DISCUSSIONS

4.1 Chemical Component of Kenaf Fractions
 4.1.1 Extractive Content
 4.1.2 Lignin Content
 4.1.3 Holocellulose Content
 4.1.4 Alpha-Cellulose Content
 4.1.5 Hemicellulose Content
 4.1.6 Ash Content
4.2 The Morphology of Kenaf Fibers
4.3 Laboratory Soda-AQ Pulping of Kenaf Whole Stem
4.4 Handsheet Evaluation
4.5 Fractionation and Consequent Selective Process
 4.5.1 Kenaf Whole Stem Soda-AQ pulp Fibers
 4.5.2 Kenaf Whole Stem Soda-AQ Handsheet Properties
4.6 Improvement of Kenaf Bast Pulp
4.7 Comparison Kenaf Pulps versus Softwood Pulp for Linerboard
 4.7.1 Beating Response
 4.7.2 Handsheet Properties
4.8 Improvement of OCC
 4.8.1 Optimization OCC Pulp Properties with Beating
 4.8.2 Comparison Kenaf Whole Stem Pulps versus Softwood Pulp and Beating to Improve OCC

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Morphology and Chemical Analysis
5.2 Soda-AQ Pulping
5.3 Fractionation and Sequence Selective Process
5.4 Comparison Kenaf Pulp with Softwood Pulp
5.5 Improvement of OCC
5.6 Overall Conclusion
5.7 Recommendation for Future Research