EFFECTS OF ANTIOXIDANT ACTIVITY AND LIPID LOWERING PROPERTIES OF DATES (*Phoenix dactylifera* L.) FROM LIBYA ON CHOLESTEROL-FED RABBITS

NAWAL SALEM AB. HASAN

FPSK(m) 2011 46
EFFECTS OF ANTIOXIDANT ACTIVITY AND LIPID LOWERING PROPERTIES OF DATES (*Phoenix dactylifera* L.) FROM LIBYA ON CHOLESTEROL-FED RABBITS

BY

NAWAL SALEM AB. HASAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2011
DEDICATION

To my husband for giving inspiration and passion to pursue my study in this field. Special appreciation also to my mentor, Prof. Madya. Dr. Zulkhairi Amom who had contributed greatly towards my career development and personal growth. My longlife best friend, Miss Noramalina Isemaail for all her effort and dedication in my journey to achieve Masters in Physiology. Last but not least, to myself the greatest motivator I have ever Known.
EFFECTS OF ANTIOXIDANT ACTIVITY AND LIPID LOWERING PROPERTIES OF DATES (Phoenix dactylifera L.) FROM LIBYA ON CHOLESTEROL-FED RABBITS

By

NAWAL SALEM AB. HASAN

April 2011

Chairman : Associate Professor Zulkhairi bin Haji Amom, PhD
Faculty : Medicine and Health Sciences

Cardiovascular diseases (CVD) are number one cause of death globally and are expected to remain as the leading cause of death in 2015. According to World Health Organization (WHO), one of the most prominent underlying pathology of CVD is atherosclerosis. The aim of this study is to evaluate the anti-oxidative and lipid-lowering effect of dates (Phoenix Dactylifera-L) flesh aqueous extract, on hypercholesterolemic induced rabbit. The in vitro study was conducted to determine the total antioxidant activity of dates aqueous extract. The scavenging activity of dates was measured using 1-diphenyl-2-picrylhydrazyl (DPPH) method and iron (3) reduction (FRAP) assay. The Total Phenolic Content (TPC) of the date was measured using the Folin-Ciocalteau method. Experimental design used adult male New Zealand white rabbits (seven animals/group) with an average body weight of 2.2-2.8 kg. Following one week acclimatization, the animals were segregated into seven groups as the
following: Normal control group, Hypercholesterolemic control group, Simvastatin group and Four treatment groups. The study was designed for 10 weeks and 20ml of ear lobe venous blood samples were taken at 0 week, 5 week, and 10 week, plasma samples obtained were analysed for biochemical measurements. The whole aortas were excised for macroscopy and microscopy studies. The proximate composition of date was found to be high in carbohydrates, total sugar, minerals and vitamins; and a relatively low content of protein, ash and soluble and insoluble dietary fibers. The date sample exhibited lower free radical scavenging activity (87.66%) than the BHT, however the FRAP value obtained for date sample (13.46 mmol/L) was comparable to those of vitamin C and BHT (13.73 mmol/L and 13.75mmol/L) respectively. The supplementation of 125 and 250 mg/kg/day of date extract reduced plasma total cholesterol (TC), low-density lipoprotein (LDL) and triglycerides (TG) levels concomitantly groups supplemented with date extract (T125, T250, T500 and T1000) were significantly higher (P<0.05) in high density lipoprotein (HDL) in diet of induced hypercholesterolemic rabbit. The atherogenic index (AI) and sdLDL values were found to be lower in date extract treated groups compared to hypercholesterolemia group (HC) (P<0.05). A significant reduction of lipid peroxidation (LPO) index indicated with low MDA levels (P<0.05) in groups treated with date extract compared to HC group. At week 10, groups treated with date extract (T125, T250, T500 and T1000) were significantly higher (P<0.05) in total antioxidant activity compared to HC group. No foam cell formation was visible in the aorta of rabbits in groups NC and T250. However, there was visible foam cell formation in the aorta of groups HC, SC, T125, T500 and T1000. In conclusion, results showed that supplementation of 250 mg/kg of dates extract would be able to reduce or retard the progression of atherosclerotic plaque development induced by dietary cholesterol. The enhanced serum HDL, increase in antioxidant status and flavonoids composition may be the possible underlying mechanism of antiatherogenic effect of dates.
Abstrak tesis ini yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN AKTIVITI ANTIOKSIDAN DAN CIRI PERENDAH LEMAK BUAH KURMA (Phoenix dactylifera L) DARI LIBYA KE ATAS ARNAB YANG DIBERI DIET KOLESTEROL

Oleh

NAWAL SALEM AB. HASAN
April 2011

Pengerusi : Prof Madya Zulkhairi bin Haji Amom, PhD
Fakulti : Berubatan dan Sains Kesihatan

kepada tujuh kumpulan seperti berikut: Kumpulan Normal, Kumpulan Hiperkolesterolemik, Kumpulan Simvastatin dan empat Kumpulan Rawatan. Kajian ini dijalankan selama 10 minggu dan 20ml darah daripada salur darah di telinga diambil pada minggu 0, minggu ke-5 dan minggu ke-10, sampel plasma kemudian diambil untuk ujian biokimia. Aorta arnab diambil untuk kajian makroskopi dan mikroskopi. Kandungan proksimat buah kurma mendapati, tinggi dengan karbohidrat, jumlah gula, garam mineral dan vitamin; dan mengandungi protein, abu dan serat larut dan serat tidak larut yang rendah. Sampel buah kurma didapati mempunyai radikal bebas aktiviti yang rendah (87.66%) daripada BHT, tetapi nilai FRAP untuk sampel buah kurma (13.46 mmol/L) adalah setara dengan nilai bagi Vitamin C dan BHT (13.73 mmol/L and 13.75mmol/L). Pemberian ekstrak buah kurma sebanyak 125 dan 250 mg/kg/hari didapati merendahkan jumlah kolesterol di dalam plasma, lipoprotein ketumpatan rendah dan trigliserida bagi kumpulan yang menerima ekstrak buah kurma (T125, T250, T500 dan T1000) adalah lebih tinggi secara signifikan (p<0.05) daripada lipoprotein ketumpatan tinggi pada arnab yang teraruh hiperkolesterolemia secara diet. Nilai aterogenik indeks dan sdLDL didapati lebih rendah daripada kumpulan yang diberi rawatan dengan ekstrak buah kurma berbanding kumpulan hiperkolesterolemia (HC) (P<0.05). Terdapat penurunan secara signifikan oksidasi lipid berdasarkan nilai MDA yang rendah (p<0.05) pada kumpulan rawatan berbanding kumpulan HC. Pada minggu ke-10, kumpulan yang dirawat dengan ekstrak buah kurma (T125, T250, T500 dan T1000) menunjukkan jumlah antioksidan activity yang lebih tinggi (P<0.05) berbanding kumpulan HC. Tetapi, terdapat pembentukan buih sel yang nyata pada aorta haiwan di kumpulan HC, SC, T125, T500 dan T1000. Kesimpulannya, hasil kajian mendapati pemberian ekstrak buah kurma sebanyak 250 mg/kg dapat merendahkan dan melambatkan kadar pembentukan
plak atherosclerosis teraruh oleh kolesterol makanan. Peningkatan serum HDL, status antioksidan dan komposis flavonoid berkemungkinan besar memainkan peranan dalam kesan antiaterogenik oleh buah kurma.
ACKNOWLEDGEMENTS

بسم الله الرحمن الرحيم

Syukur, Alhamdulillah to merciful Allah of giving me the strength to finish my project. I would like to take this opportunity to give special words of thanks to Assoc. Prof. Dr. Zulkhairi bin Haji Amom my supervisor whom without his supervision, advice, assistance guide and favourable approval this project might not have been possible. My appreciation is also special extended co-supervisor, Dr. Norhafizah Mohtarrudin. Her many useful suggestions and comments have been great help.

My deepest gratitude goes to my beloved family for their constant support, endless love and cares. Also, special greetings thanks to my husband, Mr. Subhi AB. A. Sakall for his overwhelming supports, wonderful patience, cares and motivation that has enlightened me during the difficult moments of the project. Thank you so much.

Sincere appreciation to all supporting staffs in Department of Human Anatomy, Laboratory of Physiology, UPM. Also to my dear colleagues for whom I have great regard and I wish to extend my warmest thanks to all those who have helped me with my work in the laboratory of Physiology, faculty of Medicine and Health Sciences, UPM.
This work would not have been possible without continuous support and encouragement from my best friend, Ms Noramalina Isemail encouraged me to grow and to expand my thinking. I was lucky to have such a good friend.

Finally, my special gratitude is due to my kids (Feras, Mohamed and Maram) and my brother Mr Ahmed Salem Hasan for their loving support.
I certify that an Examination Committee has met on 2011 to conduct the final examination of Nawal Salem Ab. Hasan on her Master of Science thesis entitled “Antioxidant Activities and Lipid Lowering Properties of Dates (Phoenix dactylifera L.) from Libya on cholesterol fed Rabbits” in accordance with University Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Mohd Roslan Sulaiman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rokiah Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner

Zuraini Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
/Internal Examiner

Siti Balkis Budin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
University Kebangsaan Malaysia
/External Examiner

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Sciences. The members of the Supervisory Committee were as follow:

Zulkhairi Haji Amom, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhafizah Mohtarrudin, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(member)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for questions and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any institution.

NAWAL SALEM AB. HASAN

Date: 26 April 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

2.1 Cholesterol

2.2 Biosynthesis of cholesterol

2.3 Lipoproteins

2.3.1 High Density Lipoprotein (HDL)
2.3.2 Low Density Lipoprotein (LDL)
2.3.3 Very Low Density Lipoprotein (VLDL)
2.3.4 Chylomicrons

2.4 Hypercholesterolemia

2.5 Free Radical and Oxidative Stress

2.6 Oxidized Low Density Lipoprotein (oxLDL)

2.7 Lipid peroxidation (LPO)

2.8 Defense Mechanisms Against Oxidative Stress

2.9 Atherosclerosis

2.9.1 Phases of Atherosclerosis

2.10 Hypercholesterolemia and Plasma Hepato-specific Enzyme Activity

2.11 Pharmacological Therapy for Cardiovascular Disease

2.12 Dietary Antioxidants

2.13 Polyphenols

2.14 Flavonoids

2.15 The Taxonomy and Background of *Phoenix dactylifera* L.

2.16 The Chemical Composition of *Phoenix dactylifera* L.

13
2.17 Biological and Pharmacological Activities of Phoenix dactylifera L. 44
 2.17.1 Traditional Medicinal Application 44
 2.17.2 Experimentally Validated Uses of Phoenix dactylifera L. 45
2.18 TG : HDL Ratio (sdLDL). 46
2.19 Atherogenic Index (AI) (LDL : HDL Ratio). 47

3. NUTRITIONAL COMPOSITION AND IN VITRO EVALUATION OF ANTIOXIDANT PROPERTIES OF DATE (PHOENIX DACTYLIFERA L.) FROM LIBYA.
 3.1 Introduction 48
 3.2 Materials 49
 3.2.1 Plant Material 49
 3.2.2 Chemicals and Reagents 49
 3.2.3 Apparatus 50
 3.3 Methods 50
 3.3.1 Preparation of 10% Phoenix dactylifera L. Aqueous Extract 50
 3.3.2 Proximate and Mineral Analysis 50
 3.3.3 Antioxidant Activity of Phoenix dactylifera L. Aqueous Extract 53
 3.3.4 Total Phenolic Content of Phoenix dactylifera L. Aqueous Extract 55
 3.3.5 Statistical Analysis 55
 3.4 Results 56
 3.4.1 Proximate Analysis and Chemical Composition of dates fruit. 56
 3.4.2 Antioxidant Activity and Total Phenolic Content of dates fruit. 56
 3.5 Discussion 61
 3.6 Conclusion 63

4. THE EFFECTS OF DATE (PHOENIX DACTYLIFERA L.) AQUEOUS EXTRACT SUPPLEMENTATION ON ANIMAL ORGAN WEIGHT AND PLASMA HEPATO-SPECIFIC ENZYME ACTIVITIES IN CHOLESTEROL FED RABBITS.
 4.1 Introduction 64
 4.2 Materials 66
 4.2.1 Plant Material 66
 4.2.2 Experimental Animal 66
 4.2.3 Chemicals and Reagents 66
 4.3.4 Apparatus 66
 4.3 Methods 67
 4.3.1 Preparation of 10% Phoenix dactylifera L. Aqueous Extract 67
 4.3.2 Animal Study 67
 4.3.3 Statistical Data Analysis 73
 4.4 Results 74
 4.4.1 Animal Organ Parameter 77
 4.4.2 Toxicity Study 77
5 THE ROLE OF PHOENIX DACTYLIFERA AQUEOUS EXTRACT IN IMPROVING THE PLASMA LIPID PROFILES AND ANTIOXIDANT STATUS IN CHOLESTEROL FED RABBITS.

5.1 Introduction 85
5.2 Materials 87
 5.2.1 Plant Material 87
 5.2.2 Experimental Animals 88
 5.2.3 Chemicals and Reagent 88
5.3 Methods 89
 5.3.1 Preparation of 10% Phoenix dactylifera L. Aqueous Extract 89
 5.3.2 Animal Study 89
 5.3.3 Statistical Data Analysis 95
5.4 Results 96
 5.4.1 Lipid Profiles 96
 5.4.2 Lipid Peroxidation; Malondialdehyde Level in Plasma 106
 5.4.3 Antioxidant Status 106
5.5 Discussion 112
5.6 Conclusion 119

6. THE ROLE OF PHOENIX DACTYLIFERA AQUEOUS EXTRACT IN REGRESSION THE ATHEROMATOUS PLAQUE FORMATION IN CHOLESTEROL FED RABBITS

6.1 Introduction 120
6.2 Materials 122
 6.2.1 Plant Material 122
 6.2.2 Experimental Animals 122
 6.2.3 Chemicals and Reagent 123
6.3 Methods 123
 6.3.1 Preparation of 10% Phoenix dactylifera L. Aqueous Extract 123
 6.3.2 Animal Study 123
 6.3.3 Statistical Data Analysis 128
6.4 Results 129
 6.4.1 Histological Study 129
6.5 Discussion 139
6.6 Conclusion 143

7 GENERAL DISCUSSION 144

8 GENERAL CONCLUSION 150

9 RECOMMENDATIONS 153

REFERENCES 154
APPENDICES 180
BIODATA OF STUDENT 192